Publications

2024

  1. Measuring gravity by holding atoms. Cristian D. Panda, Matthew J. Tao, Miguel Ceja, Holger Müller. https://arxiv.org/abs/2310.01344 (accepted to Nature)

  2. Modern approaches to improving phase contrast electron microscopy. Jeremy J. Axelrod, Jessie T. Zhang, Petar N. Petrov, Robert M. Glaeser, and Holger Müller. Current Opinion in Structural Biology 86 102805 and https://arxiv.org/abs/2401.11678

2023

  1. Compact Electrochromic Optical Recording of Bioelectric Potentials. Kenneth Nakasone, Chris Zavik, Erica Liu, Burhan Ahmed, Dana Griffith, Lothar Maisenbacher, Ashwin Singh, Yuecheng Zhou, Bianxiao Cui, and Holger Müller. https://arxiv.org/abs/2311.15506

  2. Atomic gravimeter robust to environmental effects. Cristian D. Panda, Matt Tao, Miguel Ceja, Andrew Reynoso, Holger Müller. Appl. Phys. Lett. 123, 064001 (2023) and
    https://arxiv.org/abs/2305.05555

  3. Dynamics of a buffer-gas-loaded, deep optical trap for molecules. Ashwin Singh, Lothar Maisenbacher, Ziguang Lin, Jeremy Axelrod, Cristian Panda, and Holger Müller. Phys. Rev. Research 5, 033008 (2023) and https://arxiv.org/abs/2301.12620

  4. Overcoming resolution loss due to thermal magnetic field fluctuations from phase plates in transmission electron microscopy. Jeremy J. Axelrod, Petar N. Petrov, Jessie T. Zhang, Jonathan Remis, Bart Buijsse, Robert M. Glaeser, and Holger Müller. Ultramicroscopy

    249, 113730 (2023) and https://www.biorxiv.org/content/10.1101/2023.02.12.528160v1

  5. Offset Lock with 440 GHz Range using Electro-Optic Modulation. Ocean Zhou, Andrew O. Neely, Zachary R. Pagel, Madeline Bernstein, Jack Roth, Holger Müller. Optics Continuum 2, 1087 (2023) and https://arxiv.org/abs/2209.10835

  6. Quantum Gas Mixtures and Dual-Species Atom Interferometry in Space. Ethan R. Elliott, David C. Aveline, Nicholas P. Bigelow, Patrick Boegel, Sofia Botsi, Eric Charron, José P. D'Incao, Peter Engels, Timothé Estrampes, Naceur Gaaloul, James R. Kellogg, James M. Kohel, Norman E. Lay, Nathan Lundblad, Matthias Meister, Maren E. Mossman, Gabriel Müller, Holger Müller, Kamal Oudrhiri, Leah E. Phillips, Annie Pichery, Ernst M. Rasel, Charles A. Sackett, Matteo Sbroscia, Wolfgang P. Schleich, Robert J. Thompson, and Jason R. Williams. Nature 623, 502–508 (2023) and arXiv:2306.15223

  7. Minute-scale gravimetry using a coherent atomic spatial superposition. Cristian D. Panda, Matt Tao, James Egelhoff, Miguel Ceja, Victoria Xu, and Holger Müller.
    https://arxiv.org/abs/2210.07289

2022

  1. Dual-color optical recording of bioelectric potentials by polymer electrochromism. Yuecheng Zhou, Erica Liu, Yang Yang, Felix Alfonso, Burhan Ahmed, Kenneth Nakasone, Csaba Forró, Holger Müller, and Bianxiao Cui. J. Am. Chem. Society 144, 23505 (2022)
  2. Tabletop experiments for infrared quantum gravity. Daniel Carney, Yanbei Chen, Andrew Geraci, Holger Müller, Cristian D. Panda, Philip C. E. Stamp, and Jacob M. Taylor. arXiv:2203.11846v2 (2022).
  3. Perspective: Emerging strategies for determining atomic-resolution structures of macromolecular complexes within cells. Petar N. Petrov, Holger Müller, and Robert M. Glaeser. J. Struct. Biol. 214, 1, 107827 (2022).

2021

  1. Optical Electrophysiology: Toward the Goal of Label-Free Voltage Imaging. Yuecheng Zhou, Erica Liu, Holger Müller, and Bianxiao Cui. J. Am. Chem. Soc. 143, 28, 10482–10499 (2021).
  2. High-Power Near-Concentric Fabry-Perot Cavity for Phase Contrast Electron Microscopy. Carter Turnbaugh, Jeremy J. Axelrod, Sara L. Campbell, Jeske Y. Dioquino, Petar N. Petrov, Jonathan Remis, Osip Schwartz, Zanlin Yu, Yifan Cheng, Robert M. Glaeser, Holger Müller. Review of Scientific Instruments 92, 053005 (2021) and arXiv:2012.08638 (2020).

  3. The Bose-Einstein Condensate and Cold Atom Laboratory. Kai Frye, Sven Abend, Wolfgang Bartosch, Ahmad Bawamia, Dennis Becker, Holger Blume, Claus Braxmaier, Sheng-Wey Chiow, Maxim A. Efremov, Wolfgang Ertmer, Peter Fierlinger, Tobias Franz, Naceur Gaaloul, Jens Grosse, Christoph Grzeschik, Ortwin Hellmig, Victoria A. Henderson, Waldemar Herr, Ulf Israelsson, James Kohel, Markus Krutzik, Christian Kürbis, Claus Lämmerzahl, Meike List, Daniel Lüdtke, Nathan Lundblad, J. Pierre Marburger, Matthias Meister, Moritz Mihm, Holger Müller, Hauke Müntinga, Ayush M. Nepal, Tim Oberschulte, Alexandros Papakonstantinou, Jaka Perovs̆ek, Achim Peters, Arnau Prat, Ernst M. Rasel, Albert Roura, Matteo Sbroscia, Wolfgang P. Schleich, Christian Schubert, Stephan T. Seidel, Jan Sommer, Christian Spindeldreier, Dan Stamper-Kurn, Benjamin K. Stuhl, Marvin Warner, Thijs Wendrich, André Wenzlawski, Andreas Wicht, Patrick Windpassinger, Nan Yu and Lisa Wörner. EPJ Quantum Technology 8, 1 (2021).

  4. Raman transitions driven by phase-modulated light in a cavity atom interferometer. Sofus L. Kristensen, Matt Jaffe, Victoria Xu, Cristian D. Panda, Holger Müller, Phys. Rev. A 103, 023715 (2021) and arXiv:2011.02946 (2020).

  5. Using an Atom Interferometer to Infer Gravitational Entanglement Generation. Daniel Carney, Holger Müller, Jacob M. Taylor. PRX Quantum 2, 3, 030330 (2021). See also ErratumPRX Quantum 3, 010902 (2022) and arXiv:2111.04667.

2020

  1. Standard model of particle physics tested by the fine-structure constant. Holger Müller, Nature 588, 37-38 (2020).
  2. Symmetric Bloch oscillations of matter waves. Zachary Pagel, Weicheng Zhong, Richard H. Parker, Christopher T. Olund, Norman Y. Yao, Holger Mueller, Phys. Rev. A 102, 053312 (2020) and arXiv:1907.05994.

  3. Observation of the relativistic reversal of the ponderomotive potential. Jeremy J. Axelrod, Sara L. Campbell, Osip Schwartz, Carter Turnbaugh, Robert M. Glaeser, and Holger Mueller. Phys. Rev. Lett. 124, 174801 and arXiv:1910.14441 (2019).

  4. Offset Simultaneous Conjugate Atom Interferometers. Weicheng Zhong, Richard H. Parker, Zachary Pagel, Chenghui Yu, and Holger Müller. Phys. Rev. A 101, 053622 and arXiv:1901.03487.

  5. Guided matter wave inertial sensing in a miniature physics package. Karl Nelson, Chad Fertig, Paul Hamilton, Justin Brown, Brian Estey, Holger Müller, Robert Compton Appl. Phys. Lett. 116, 234002 (2020) and arxiv.org/abs/2006.01951.

  6. Label-free optical detection of bioelectric potentials using electrochromic thin films. Felix S. Alfonso, Yuecheng Zhou, Erica Liu, Allister F. McGuire, Yang Yang, Husniye Kantarci, Dong Li, Eric Copenhaver, J. Bradley Zuchero, Holger Muller, and Bianxiao Cui. PNAS (2020) and bioRxiv 2020.05.16.099002.

  7. Laser phase plate for transmission electron microscopy. Osip Schwartz, Jeremy J. Axelrod, Sara L. Campbell, Carter Turnbaugh, Robert M. Glaeser, and Holger Müller. Nat. Methods 16, 1016-1020 (2019) and arXiv:1812.04596.

2019

  1. Measurement of a 7Li tune-out wavelength by phase-patterned atom interferometry. Eric Copenhaver, Kayleigh Cassella, Robert Berghaus, and Holger Müller, Phys. Rev. A 100, 063603 (2019) and arXiv:1904.08974 (2019).

  2. Gravity surveys using a mobile atom interferometer. Xuejian Wu, Zachary Pagel, Bola S. Malek, Timothy H. Nguyen, Fei Zi, Daniel S. Scheirer, and Holger Müller. Science Advances 5(9), eaax0800 (2019) and arXiv:1904.09084.

  3. Embedded control system for mobile atom interferometers. Bola S. Malek, Zachary Pagel, Xuejian Wu, Holger Müller. Rev. Sci. Instrum 90, 073103 (2019) and arXiv:1812.01028.

  4. Atom‐Interferometry Measurement of the Fine Structure Constant. Chenghui Yu, Weicheng Zhong, Brian Estey, Joyce Kwan, Richard H. Parker, and Holger Müller. Annalen der Physik, 1800346 (2019).

  5. The Bose-Einstein Condensate and Cold Atom Laboratory. Kai Frye, Sven Abend, Wolfgang Bartosch, Ahmad Bawamia, Dennis Becker, Holger Blume, Claus Braxmaier, Sheng-Wey Chiow, Maxim A. Efremov, Wolfgang Ertmer, Peter Fierlinger, Naceur Gaaloul, Jens Grosse, Christoph Grzeschik, Ortwin Hellmig, Victoria A. Henderson, Waldemar Herr, Ulf Israelsson, James Kohel, Markus Krutzik, Christian Kürbis, Claus Lämmerzahl, Meike List, Daniel Lüdtke, Nathan Lundblad, J. Pierre Marburger, Matthias Meister, Moritz Mihm, Holger Müller, Hauke Müntinga, Tim Oberschulte, Alexandros Papakonstantinou, Jaka Perovšek, Achim Peters, Arnau Prat, Ernst M. Rasel, Albert Roura, Wolfgang P. Schleich, Christian Schubert, Stephan T. Seidel, Jan Sommer, Christian Spindeldreier, Dan Stamper-Kurn, Benjamin K. Stuhl, Marvin Warner, Thijs Wendrich, André Wenzlawski, Andreas Wicht, Patrick Windpassinger, Nan Yu, and Lisa Wörner. arXiv:1912.04849

  6. SAGE: A proposal for a space atomic gravity explorer. Guglielmo M. Tino, Angelo Bassi, Giuseppe Bianco, Kai Bongs, Philippe Bouyer, Luigi Cacciapuoti, Salvatore Capozziello, Xuzong Chen, Maria L. Chiofalo, Andrei Derevianko, Wolfgang Ertmer, Naceur Gaaloul, Patrick Gill, Peter W. Graham, Jason M. Hogan, Luciano Iess, Mark A. Kasevich, Hidetoshi Katori, Carsten Klempt, Xuanhui Lu, Long-Sheng Ma, Holger Müller, Nathan R. Newbury, Chris W. Oates, Achim Peters, Nicola Poli, Ernst M. Rasel, Gabriele Rosi, Albert Roura, Christophe Salomon, Stephan Schiller, Wolfgang Schleich, Dennis Schlippert, Florian Schreck, Christian Schubert, Fiodor Sorrentino, Uwe Sterr, Jan W. Thomsen, Giuseppe Vallone, Flavio Vetrano, Paolo Villoresi, Wolf von Klitzing, David Wilkowski, Peter Wolf, Jun Ye, Nan Yu, and Mingsheng Zhan, Eur. Phys. J. D (2019) 73: 228

  7. Probing gravity by holding atoms for 20 seconds. Victoria Xu, Matt Jaffe, Cristian D. Panda, Sofus L. Kristensen, Logan W. Clark, Holger Müller, Science 366, 745-749 (2019) full text | reprint | arXiv:1907.03054.

2018

  1. Bis an die Grenzen des Messbaren. Holger Müller, Philipp Haslinger. Physik in Unserer Zeit, 228-235 (2018).

  2. Efficient adiabatic spin-dependent kicks in an atom interferometer. Matt Jaffe, Victoria Xu, Philipp Haslinger, Holger Müller, Paul Hamilton. PRL 121, 040402 (2018) and arXiv:1803.09024.

  3. Measurement of the fine-structure constant as a test of the Standard Model. Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, and Holger Müller, Science 360, 191-195 (2018) and arXiv:1812.04130.

  4. Next Generation of Phonon Tests of Lorentz Invariance using Quartz BAW Resonators. Maxim Goryachev, Zeyu Kuang, Eugene Ivanov, Philipp Haslinger, Holger Mueller, Michael Tobar, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 65, 991-1000 (2018), doi:10.1109/TUFFC.2018.2824845.

  5. Quantum Sensing for High Energy Physics. (116 authors, including Holger Müller) arXiv:1803.11306.

  6. Limits on Lorentz violation in gravity from worldwide superconducting gravimeters. Cheng-Gang Shao, Ya-Fen Chen, Rong Sun, Lu-Shuai Cao, Min-Kang Zhou, Zhong-Kun Hu, Chenghui Yu, Holger Müller, PRD 97, 024019 (2018) and arXiv:1707.02318.

  7. Attractive force on atoms due to blackbody radiation. Philipp Haslinger, Matt Jaffe, Victoria Xu, Osip Schwartz, Matthias Sonnleitner, Monika Ritsch-Marte, Helmut Ritsch, and Holger Müller, Nature Physics 14, 257–260 (2018) (also, public link) and arXiv:1704.03577.

  8. Laser Interferometers as Dark Matter Detectors. Evan D. Hall, Thomas Callister Valery V. Frolov, Holger Müller, Maxim Pospelov, Rana X. Adhikari, Phys. Rev. D 98, 083019 and arXiv:1605.01103.

2017

  1. Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap. Xuejian Wu, Fei Zi, Jordan Dudley, Ryan J. Bilotta, Philip Canoza, and Holger Müller, Optica 4(12),1545-1551 (2017) and arXiv:1707.08693.

  2. Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass. Matt Jaffe, Philipp Haslinger, Victoria Xu, Paul Hamilton, Amol Upadhye, Benjamin Elder, Justin Khoury, and Holger Müller, Nature Physics 13, 938–942 (2017) (also, public link) and arXiv:1612.05171. See also Erratum Nat. Phys. (2023).

  1. Viewpoint: Measuring the tidal force on a particle’s matter wave. Matt Jaffe, Holger Müller, PRL viewpoint.

  2. Laser frequency stabilization by combining modulation transfer and frequency modulation spectroscopy. Fei Zi, Xuejian Wu, Weicheng Zhong, Richard H. Parker, Chenghui Yu, Simon Budker, Xuanhui Lu, and Holger Müller, Appl. Opt. 56, 2649-2652 (2017) and arXiv:1701:01918.

  3. Gravity gradient suppression in spaceborne atomic tests of the equivalence principle. Sheng-wey Chiow, Jason Williams, Nan Yu, and Holger Müller, Phys. Rev. A 95, 021603 (2017) and arXiv:1612.02053.

  4. Recoil-Sensitive Lithium Interferometer without a Subrecoil Sample. Kayleigh Cassella, Eric Copenhaver, Brian Estey, Yanying Feng, Chen Lai, and Holger Müller, Phys. Rev. Lett. 118, 233201 (2017) and arXiv:1610.07588.

  5. Near-concentric Fabry-Pérot cavity for continuous-wave laser control of electron waves. Osip Schwartz, Jeremy J. Axelrod, Daniel R. Tuthill, Philipp Haslinger, Colin Ophus, Robert M. Glaeser, and Holger Müller. Opt. Express 25, 14453-14462 (2017) and arXiv:1610.08493.

    Preprints


    US Cosmic Visions: New Ideas in Dark Matter 2017. Marco Battaglieri et al., arXiv:1707.04591.

2016

  1. Controlling the Multiport Nature of Bragg Diffraction in Atom Interferometry. Richard H. Parker, Chenghui Yu, Brian Estey, Weicheng Zhong, Eric Huang, and Holger Müller, Phys. Rev. A 94, 053618 (2016) and arXiv:1609.06344.

  2. Improved Accuracy of Atom Interferometry Using Bragg Diffraction. Chenghui Yu, Brian Estey, Weicheng Zhong, Richard H. Parker, and Holger Müller, Conference Proceeding, (Proceedings of the Seventh Meeting on CPT and Lorentz Symmetry (CPT’16), Indiana University, Bloomington, June 20-24, 2016).

  3. Verifying quantum superpositions at metre scales. Dan M. Stamper-Kurn, G. Edward Marti, and Holger Müller, Nature, 537 (2016) and arXiv:1607.01454.

  4. Chameleon Dark Energy and Atom Interferometry. Benjamin Elder, Justin Khoury, Philipp Haslinger, Matt Jaffe, Holger Müller, Paul Hamilton, PRD 94, 044051 (2016) and arXiv:1603.06587.

  5. Acoustic tests of Lorentz symmetry using quartz oscillators. Anthony Lo, Philipp Haslinger, Eli Mizrachi, Loïc Anderegg, Holger Müller, Michael Hohensee, Maxim Goryachev, and Michael E. Tobar, Phys. Rev. X, 6, 011018 (2016) and arXiv:1412.2142.

  6. Quantum Test of the Equivalence Principle and Space-Time aboard the International Space Station. Jason Williams, Sheng-wey Chiow, Holger Müller, and Nan Yu, New J. Phys, 18 (2016) and arXiv:1510.07780.

  7. Macroscopic quantum resonators (MAQRO): 2015 Update. Rainer Kaltenbaek, Markus Aspelmeyer, Peter F. Barker, Angelo Bassi, James Bateman, Kai Bongs, Sougato Bose, Claus Braxmaier, Caslav Brukner, Bruno Christophe, Michael Chwalla, Pierre-Francois Cohadon, A. Michael Cruise, Catalina Curceanu, Kishan Dholakia, Lajos Diosi , Klaus Doringshoff, Wolfgang Ertmer, Jan Gieseler, Norman Gurlebeck, Gerald Hechenblaikner, Antoine Heidmann, Sven Herrmann, Sabine Hossenfelder, Ulrich Johann, Nikolai Kiesel, Myungshik Kim, Claus Lammerzah, Astrid Lambrecht, Michael Mazilu, Gerard J. Milburn , Holger Muller, Lukas Novotny, Mauro Paternostro, Achim Peters, Igor Pikovski, Andre Pilan Zanoni, Ernst M. Rasel, Serge Reynaud, C. Jess Riedel, Manuel Rodrigues, Loic Rondin , Albert Roura, Wolfgang P. Schleich, Jorg Schmiedmayer, Thilo Schuldt, Keith C. Schwab, Martin Tajmar, Guglielmo M. Tino, Hendrik Ulbricht, Rupert Ursin and Vlatko Vedral, EPJ Quantum Technology (2016) 3:5.

2015

  1. High resolution atom interferometers with suppressed diffraction phases. Brian Estey, Chenghui Yu, Holger Müller, Pei-Chen Kuan, and Shau-Yu Lan, Phys. Rev. Lett. 115, 083002 (2015) and arXiv:1410.8486.

  2. Atom-interferometry constraints on dark energy. Paul Hamilton, Matt Jaffe, Philipp Haslinger, Quinn Simmons, Holger Müller, and Justin Khoury, Science, 349, 849 (2015) (or abstract and full text) and arXiv:1502.03888.

  3. Atom interferometry in an optical cavity. Paul Hamilton, Matt Jaffe, Justin M. Brown, Lothar Maisenbacher, Brian Estey, and Holger Müller, Phys. Rev. Lett. 114, 100405 (2015) and arxiv:1409.7130.

2014

  1. Dark matter: Time for detection. Rana Adhikari, Paul Hamiton, and Holger Müller, Nature Physics 10, 906–907 (2014).
  2. Concept of a miniature atomic sensor. Paul Hamilton, Matt Jaffe, Justin M. Brown, Brian Estey, and Holger Müller. Inertial Sensors and Systems (ISISS), 2014 International Symposium on, IEEE Conference Publications.
  3. Antimatter interferometry for gravity measurements. Paul Hamilton, Andrey Zhmoginov, Francis Robicheaux, Joel Fajans, Jonathan Wurtele, and Holger Müller. Phys. Rev. Lett. 112, 121102 (2014) and arxiv:1308.1079.

  4. Sisyphus Cooling of Lithium. Paul Hamilton, Geena Kim, Trinity Joshi, Biswaroop Mukherjee, Daniel Tiarks, and Holger Müller, Phys. Rev. A 89, 023409 (2014) and arxiv:1308.1935.

  5. Quantum mechanics, matter waves, and moving clocks. Holger Müller, arXiv:1312.6449. To be published in the proceedings of the International School of Physics "Enrico Fermi" 2013, Course 188 - Atom Interferometry.
  6. Antimaterie im freien Fall. Philipp Haslinger and Holger Müller, Physik in unserer Zeit 45, 165–166 (2014).
  7. Generalization of the Matsumoto-Tonomura approximation for the phase shift within an open aperture. Robert M. Glaeser and Holger Müller, Ultramicroscopy 138, 1-3 (2014).

2013

  1. Low-Frequency Terrestrial Gravitational-Wave Detectors. Jan Harms, Bram J. J. Slagmolen, Rana X. Adhikari, M. Coleman Miller, Matthew Evans, Yanbei Chen, Holger Müller, and Masaki Ando, Phys. Rev. D 88, 122003 (2013). arxiv:1308.2074
  2. Equivalence Principle and Bound Kinetic Energy. Michael A. Hohensee, Holger Müller, and R. B. Wiringa, Phys. Rev. Lett. 111, 151102 (2013). arxiv:1308.2936
  3. A clock directly linking time to a particle’s mass. Shau-Yu Lan, Pei-Chen Kuan, Brian Estey, Damon English, Justin Brown, Michael Hohensee, and Holger Müller, Science, 339, 554 (2013) with Science Perspective.
  4. Atom interferometry. Michael Hohensee, Shau-Yu Lan, and Holger Müller, In: Editors of McGraw-Hill (editors), McGraw-Hill Yearbook of Science and Technology 2014 (McGraw-Hill Book Co, New York, 2013).
  5. Terrestrial vs. spaceborne, quantum vs. classical tests of the equivalence principle. Michael A. Hohensee and Holger Müller, to appear in Proc. of the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, IN (2013) and arxiv:1307.5987.
  6. Precision experiments and fundamental physics at low energies–Part II. Klaus Blaum, Holger Müller, and Nathal Severijns, Editorial, Ann. Phys. 525 A127-A128 (2013).
  7. Precision experiments and fundamental physics at low energies–Part I. Klaus Blaum, Holger Müller, and Nathal Severijns, Editorial, Ann. Phys. 525 A111-A112 (2013).
  8. Development of a Laser Phase Plate for Zernike Phase Contrast in Electron Microscopy. Michelle Xu, Erin Sohr, Brian Shevitski, Robert M. Glaeser, and Holger Müller, Microscopy and Microanalysis 19 (S2), 1146-1147 (2013).
  9. Robust cooling of lithium for testing Einstein's equivalence principle. Geena Kim, Paul Hamilton, Biswaroop Murkherjee, Daniel Tiarks, Trinity Pradhananga, and Holger Müller, Bull. American Phys. Soc. 58

2012

  1. Force-free gravitational redshift: a Gravitational Aharonov-Bohm experiment. Michael A. Hohensee, Brian Estey, Paul Hamilton, Anton Zeilinger, and Holger Müller, Phys. Rev. Lett. 108, 230404 (2012) and arXiv:1109.4887.
  2. Influence of the Coriolis force in atom interferometry. Shau-Yu Lan, Pei-Chen Kuan, Brian Estey, Philipp Haslinger, and Holger Müller, http://physics.aps.org/articles/v5/26 Phys. Rev. Lett. 108, 090402 (2012) and arXiv:1110.6910.
  3. Comment on: 'Does an atom interferometer test the gravitational redshift at the Compton frequency?'. Michael A. Hohensee, Steven Chu, Achim Peters, and Holger Müller, Class. Quant, Grav., 29, 048001 (2012). IOP and arXiv:1112.6039
  4. Large momentum transfer atom interferometry with Coriolis force compensation. Pei-Chen Kuan, Shau-Yu Lan, Brian Estey, Philipp Haslinger, and Holger Müller, Bull. American Phys. Soc. 57.
  5. A focused CO2 laser beam for phase contrast electron microscopy. Michelle Xu, Erin Sohr, and Holger Müller, Bull. American Phys. Soc. 57.

2011

  1. Equivalence Principle and Gravitational Redshift. Michael A. Hohensee, Steven Chu, Achim Peters, and Holger Müller, Phys. Rev. Lett. 106, 151102 (2011) and arXiv:1102.4362.
  2. Starker Anstoss für kalte Atome. Dennis Schlippert and Holger Müller, Physik Journal 11/2011.
  3. Precision tests of general relativity with matter waves. Michael A. Hohensee and Holger Müller, J. Mod. Opt. 58, 2021 (2011) and arXiv:1106.2241.
  4. Gravitational Redshift, Equivalence Principle, and Matter Waves. Michael A. Hohensee, Brian Estey, Francisco Monsalve, Geena Kim, Pei-Chen Kuan, Shau-Yu Lan, Nan Yu, Achim Peters, Steven Chu, and Holger Müller, J. Phys.: Conf. Ser. 264, 012009 (2011) and arXiv:1009.2485.
  5. A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry. Ronald J. Adler, Martin L. Perl and Holger Müller. Int. J. Mod. Phys. A 26, 4959-4979 (2011) and arXiv:1101.5626.
  6. Significance of the Compton frequency in atom interferometry. Michael A. Hohensee and Holger Müller, Proc. 46th Recontres de Moriond. Gravitational Waves and Experimental Gravity, (2011) and arXiv:1107.1830.
  7. Matter-wave Tests of the Gravitational Redshift in Space. Holger Müller, Michael A. Hohensee, and Nan Yu, In: Alan Kostelecky (editor), Proc. 5th Meeting on CPT and Lorentz Symmetry, pp. 6-10 (World Scientific, Singapore, 2011).
  8. Redshift Anomalies with Universal Free Fall. Michael A. Hohensee and Holger Müller, In: Alan Kostelecky (editor), Proc. 5th Meeting on CPT and Lorentz Symmetry, pp. 229-223 (World Scientific, Singapore, 2011), arxiv:1008.0611
  9. Sources and technology for an atomic gravitational wave interferometric sensor. Michael A. Hohensee, Shau-Yu Lan, Rachel Houtz, Cheong Chan, Brian Estey, Geena Kim, Pei-Chen Kuan, and Holger Müller. arXiv:1001.4821 General Relativity and Gravitation 43 (7), 1905-1930 (2013).
  10. Gravitational Redshift, Equivalence Principle, and Matter Waves. Holger Mueller, Bull. American Phys. Soc. 56

2010

  1. Atom Gravimeters and the Gravitational Redshift. Holger Müller, Achim Peters, and Steven Chu, Nature 467 E2 (2010)and arXiv:1009.1838.
  2. Design of an electron microscope phase plate using a focused continuous-wave laser. Holger Müller, Jian Jin, Radostin Danev, John Spence, Howard Padmore, and Robert Glaeser, New J. of Physics 12, 073011 (2010) and arXiv:1002.4237.
  3. A precision measurement of the gravitational redshift by the interference of matter waves. Holger Müller, Achim Peters, and Steve Chu, Nature 463, 926 (2010).
    • Selected secondary reports about this work
      • Relative values: Einstein theory proved in 21st century test, (AFP)
      • General Relativity tested on a Tabletop, Nature 463, 862 (2010).
      • Einstein's gravitational Redshift measured with high precision, Scientific American, Feb. 17, 2010.
      • Germany: Die Materiewellen sprechen für Einstein, Frankfurter Allgemeine Zeitung, March 3, 2010.
      • Most precise test yet of Einstein's gravitational redshift, UC Berkeley Press Release, Feb. 17, 2010.
      • Atomic Fountain Reveals "gravitational red shift". New Scientist, Feb. 20, 2010 and online announcement Feb. 17, 2010.
  4. Matter-wave Tests of the Gravitational Redshift in Space. Holger Müller, Michael A. Hohensee, and Nan Yu, Proc. of the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, IN, World Scientific, Singapore, p6 (2010), arXiv:1008.0613.
  5. Redshift Anomalies with Universal Free-Fall. Michael A. Hohensee and Holger Mueller. Proc. of the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, IN, World Scientific, Singapore, p229 (2010), arXiv:1008.0611.
  6. Präzisionsmessung der Gravitations-Rotverschiebung. Holger Müller and Achim Peters, Phys. In unserer Zeit 41, 164-165 (2010).
  7. Atom Interferometry Experiments in Fundamental Physics. Shau-Yu Lan, Pei-Chen Kuan, Brian Estey, Cheong Chan, and Holger Müller, Bull. Am. Phys. Soc. 55.
  8. Test of the equivalence principle using Li atom interferometry. Geena Kim and Holger Müller, Bull. Am. Phys. Soc. 55.
  9. Exploring the possibility of detecting dark energy in a terrestrial experiment using atom interferometry. Martin L. Perl and Holger Müller, arXiv:1001.4061.

2009

  1. Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics, Keny-Yeow Chung, Sheng-wey Chiow, Sven Herrmann, Steven Chu, and Holger Müller, Phys. Rev. D 80, 016002 (2009) and arXiv:0905.1929.
  2. Wideband, Efficient Optical Serrodyne Frequency Shifting with a Phase Modulator and a Nonlinear Transmission Line. Rachel Houtz, Cheong Chan, and Holger Müller, Optics Express 17, 19235 (2009) and arXiv:0909.3066.
  3. Atom interferometers with scalable enclosed area, Holger Mueller, Sheng-wey Chiow, Sven Herrmann, and Steven Chu, Phys. Rev. Lett. 102, 240403 (2009) and arXiv:0903.4192.
  4. 6 W, 1 kHz linewidth, tunable continuous-wave near-infrared laser, Sheng-wey Chiow, Sven Herrmann, Holger Müller, and Steven Chu, Optics Express 17, 5246 (2009) and arXiv:0901.2582.
  5. Noise-Immune Conjugate Large-Area Atom Interferometers, Sheng-wey Chiow, Sven Herrmann, Steven Chu, and Holger Müller, Phys. Rev. Lett. 103, 050402 (2009) and arXiv:0901.1819.
  6. Thermo-acoustic optical path length stabilization in a single-mode optical fiber, Wojciech Lewoczko-Adamczyk, Max Schiemangk, Holger Müller, and Achim Peters, Applied Optics 48, 704 (2009).
  7. Quantum Physics Exploring the Outer Solar System: The SAGAS Project, P. Wolf, A. Clairon, L. Duchayne, A. Landragin, P. Lemonde, G. Santarelli, W. Ertmer, E. Rasel, G.M. Tino, P. Gill, H. Klein, S. Reynaud, C. Salomon, E. Peik, O. Bertolami, P. Gil, J. Pamos, A. Rathke, C. Jentsch, P. Bouyer, D. Izzo, L. Cacciapuoti, P. De Natale, P. Touboul, B. Christophe, S.G. Turyshev, J.D. Anderson, M.E. Tobar, F. Schmidt-Kaler, J. Vigü, L. Marmet, M-C. Angonin, P. Delva, P. Tourrenc, G. Metris, Holger Müller, and R. Walsworth, Experimental Astronomy 23, 659 (2009). arxiv:0711.0304.
  8. Atom Interferometry Experiments in Fundamental Physics. Sheng-wey Chiow, Sven Herrmann, Steven Chu, and Holger Müller, Proc. 7th Symposium on Frequency Standards and Metrology, pp. 53-61. (World Scientific, Singapore 2009).
  9. Coherent Control of Ultracold Matter: Fractional Quantum Hall Phyaics and Large-Area Atom Interferometry. Edina Sarajlic, Nathan Gemelke, Sheng-wey Chiow, Sven Herrman, Holger Müller, and Steven Chu. In Proc. XXI Int. Conf. on Atomic Physics, Edited by R. Cote et al., pp 34-45 (World Scientific, Singapore, 2009.)

2008

  1. Atom Interferometry tests of the isotropy of Post-Newtonian Gravity, Holger Müller, Sheng-wey Chiow, Sven Herrmann, Steven Chu, Keng-Yeow Chung, Phys. Rev. Lett. 100, 031101 (2008). arXiv:0710.3768.
  2. Atom Interferometry with up to 24-Photon-Momentum-Transfer Beam Splitters, Holger Müller, Sheng-wey Chiow, Quan Long, Sven Herrmann, and Steven Chu, Phys. Rev. Lett. 100, 180405 (2008). arXiv:0712.1990.
  3. Measuring the Fine Structure Constant Using Multiphoton Atom Interferometry. Holger Müller, Sheng-wey Chiow, Sven Herrmann, and Steven Chu, Laser Science (XXIV,) OSA Technical Digest (Optical Society of America, 2008)
  4. "Atom Interferometry using Beam Splitters Based on Multi-Photon Bragg Diffraction: A Tool for Precision Measurements. Sven Herrmann, Sheng-wey Chiow, Holger Müller, and Steven Chu, Quantum Electronics and Laser Science Conference 2008, QThH2
  5. Coherent Control of Ultracold Matter: Fractional Quantum Hall Physics and Large-Area Atom Interferometry. Edina Sarajlic, Nathan Gemelke, Sheng-wey Chiow, Sven Herrman, Holger Müller, and Steven Chu, Proc. 21st International Conference on Atomic Physics (ICAP), July 27-August 1, 2008 in Storrs, Connecticut, USA.
  6. The SAGAS Project. P. Wolf, Ch. J. Bordé, A. Clairon, L. Duchayne, A. Landragin, P. Lemonde, G. Santarelli, W. Ertmer, E. Rasel, F.S. Cataliotti, M. Inguscio, G.M. Tino, P. Gill, H. Klein, S. Reynaud, C. Salomon, E. Peik, O. Bertolami, P. Gil, J. Páramos, C. Jentsch, U. Johann, A. Rathke, P. Bouyer, L. Cacciapuoti, D. Izzo, P. De Natale, B. Christophe, P. Touboul, S.G. Turyshev, J.D. Anderson, M.E. Tobar, F. Schmidt-Kaler, J. Vigué, A. Madej, L. Marmet, M-C. Angonin, P. Delva, P. Tourrenc, G. Metris, H. Müller, R. Walsworth, Z.H. Lu, L. Wang, K. Bongs, A. Toncelli, M. Tonelli, H. Dittus, C. Lämmerzahl, G. Galzerano, P. Laporta, J. Laskar, A. Fienga, F. Roques, and K. Sengstock, Proc. European Frequency and Time Forum 2008.
  7. Atom Interferometry tests the isotropy of Post-Newtonian Gravity Holger Müller, Sheng-wey Chiow, Sven Herrmann, Steven Chu, Keng-Yeow Chung, in: A Kostelecky, (ed.), CPT and Lorentz symmetry IV, p. 150 (World Scientific, Singapore, 2008).
  8. Multiphoton- and simultaneous conjugate Ramsey-Borde atom interferometers. Holger Müller, Sheng-wey Chiow, S. Herrmann, and S. Chu, AIP Conf. Proc. 977, 291 (2008).
  9. Complementary Michelson-Morley Experiments: coordinate and field redefinitions. Holger Müller, Sven Herrmann, Alexander Senger, Evgeny Kovalchuk, Achim Peters, Paul Louis Stanwix, Michael Edmund Tobar, Eugene Ivanov, and Peter Wolf, in: A Kostelecky, (ed.), CPT and Lorentz symmetry IV, p. 302 (World Scientific, Singapore, 2008).
  10. Are Active and Passive Electric Charges Equal? C. Lämmerzahl, A. Macias, and H. Müller. Eleventh Marcel Grossmann Meeting On Recent Developments in Theor. Experimental General Relativity, Gravitation and Relativistic Field Theories, p. 1275-1277.
  11. Atom interferometric test of the isotropy of Post-Newtonian gravity. S.-W. Chiow, S. Herrmann, H. Mueller, and S. Chu, Bull. Am. Phys. Soc. 53
  12. Simultaneous conjugate large area atom interferometers for a precision photon recoil measurement. S.-w. Chiow, S. Herrmann, H. Mueller, and S. Chu, 9Bull. Am. Phys. Soc. 53.](http://meetings.aps.org/Meeting/DAMOP08/Event/84808)
  13. Diffraction between the Raman-Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts. Holger Müller, Sheng-wey Chiow, and Steven Chu, Phys. Rev. A 77, 023609 (2008). arXiv:0704.2627.

2007

  1. Nanosecond electro-optical switching with a repetition rate above 20MHz, Holger Müller, Sheng-wey Chiow, Sven Herrmann, Steven Chu, Rev. Sci. Instrum. 78, 124702 (2007). arXiv:0710.1374.
    • Secondary report about this work
      • Belle Dume, EO device achieves 2 ns switching time, NanotechWeb news story, Electro-optics modulator switches in 2 ns. Optics.org
  2. Extended cavity diode lasers with tracked resonances, Holger Müller, Sheng-wey Chiow, Quan Long, Christoph Vo, and Steven Chu, Appl. Opt. 46, 7997-8001 (2007). arXiv:0710.0636.
  3. Tests of relativity by complementary rotating Michelson-Morley experiments, Holger Müller, Sven Herrmann, Alexander Senger, Evgeny Kovalchuk, Achim Peters, Paul Louis Stanwix, Michael Edmund Tobar, Eugene Ivanov, and Peter Wolf, Phys. Rev. Lett. 99, 050401 (2007). arxiv:0706.2031.
    • Secondary reports about this work
      • Turned Out Right, Research Highlights, Nature 448,626 (2007).
      • Hamish Jonston, Two Relativity tests are Better Than One, Physics Web Headline News, 28 June 2007.
  4. Atominterferometrie zur Messung der Feinstrukturkonstanten, Holger Müller, Sheng-wey Chiow, Quan Long, and Steven Chu, Phys. in unserer Zeit, 38, 165 (2007).
  5. Limits to differences in active and passive charges Claus Lämmerzahl, Alredo Macias, and Holger Müller, Phys. Rev. A 75, 052104 (2007). arxiv:0703163

2006

  1. One way and two way speed of light and geometry in Michelson-Morley experiments. (Comment on Broda and Ostrowski, Michelson-Morley Experiment Revisited), Holger Müller, Concepts of Physics IV, 10 (2006).
  2. A new photon recoil experiment: towards a determination of the fine structure constant. Holger Müller, Sheng-wey Chiow, Quan Long, Christoph Vo, and Steven Chu, Appl. Phys. B 84, 633-642 (2006). arxiv:0605125.
  3. Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in freqüncy standards. Holger Müller, Achim Peters, and Claus Braxmaier, Appl. Phys. B 84, 401-408 (2006). arxiv:physics/0511072.
  4. Phase-Locked, High-Power, Low-Noise, Frequency Agile, Continuous-Wave Titanium:Sapphire Lasers. Holger Müller, Sheng-wey Chiow, Quan Long, and Steven Chu, Opt. Lett. 31, 202 (2006). arxiv:physics/0507187
  5. Test of Lorentz Invari¬ance using a continuously rotating optical resonator. Sven Herrmann, Alexander Senger, Evgeny Kovalchuk, Holger Müller, and Achim Peters, Lect. Notes Phys. 702, 385 (2006).

2005

  1. Active laser beam alignment for counterpropagation beyond the Rayleigh criterion, Holger Müller, Sheng-wey Chiow, Quan Long, Christoph Vo, and Steven Chu,Opt. Lett. 30, 3323 (2005). arXiv:physics/0507039.
  2. Test of the isotropy of the speed of light using a continuously rotating optical resonator. Sven Herrmann, Alexander Senger, Evgeny Kovalchuk, Holger Müller, and Achim Peters, Phys. Rev. Lett. 95, 150401 (2005). arxiv:physics/0508097.
  3. High speed drivers for electro-optic modulators. Holger Müller, Rev. Sci. Instr. 76, 084701 (2005). arxiv:physics/0506050.
  4. Lorentz invariance violation and charge (non)conservation: A general theoretical frame for extensions of the Maxwell equations. Claus Lämmerzahl, Alfredo Macias, and Holger Müller, Phys. Rev. D 71, 025007 (2005). arxiv:gr-qc/0501048
  5. The search for quantum gravity signals. G. Amelino-Camelia, C. Lämmerzahl, A. Macias, and Holger Müller, AIP Conf. Proc. 758, 30 (2005). arxiv:gr-qc/0501053.
  6. Macroscopic matter in Lorentz tests. Holger Müller and Claus Lämmerzahl in: V.A. Kostelecky (ed.), CPT and Lorentz Symmetry III (World Scientific, Singapore, 2005).
  7. The phyics of generalized Maxwell equations. Claus Lämmerzahl and Holger Müller, in: V.A. Kostelecky (ed.), CPT and Lorentz Symmetry III (World Scientific, Singapore, 2005).
  8. New tests of Lorentz invariance using cryogenic optical resonators. Achim Peters, Sven Herrmann, Evgeny Kovalchuk, and Holger Müller, in: V.A. Kostelecky (ed.), CPT and Lorentz Symmetry III (World Scientific, Singapore, 2005).

2004

  1. Testing Lorentz invariance by the use of vacuum- and matter filled cavities. Holger Müller, Phys. Rev. D 71, 045004 (2005). arxiv:hep-ph/0412385.
    • Secondary report about this work
      • Neil Russell, Framing Lorentz Symmetry, CERN courier Nov. 24, 2004.
  2. Tests of Lorentz invariance using hydrogen molecules. Holger Müller, Sven Herrmann, Alejandro Saenz, Achim Peters, and Claus Lämmerzahl,Phys. Rev. D 70, 076004 (2004). arxiv:hep-ph/0405177.
  3. OPTIS - An Einstein Mission for Improved Tests of Special and General Relativity. Claus Lämmerzahl, I. Ciufolini, Hansjörg Dittus, Lorenzo Iorio, Holger Müller, Achim Peters, E. Samain, S. Scheithaür, and Stephan Schiller, Gen. Relativity Gravitat. 36, 2373 (2004).
  4. Einstein's Theorie auf dem optischen Prüfstand. Holger Müller and Achim Peters, Physik in unserer Zeit, 35, 70 (2004).
  5. Experimental limits for low-frequency space-time fluctuations from ultrastable optical resonators. Stephan Schiller, Claus Lämmerzahl, Holger Müller, Claus Braxmaier, Sven Herrmann, and Achim Peters, arxiv:gr-qc/0401103, Phys. Rev. D 69, 027504 (2004).

2003

  1. Die experimentelle Überprüfing der speziellen Relativitätstheorie mit kryogenen optischen Resonatoren, Holger Müller, Sven Herrmann, Claus Braxmaier, Stephan Schiller, and Achim Peters, Wechselwirkung 123/124, 103-108 (2003).
  2. Cavity tests of Lorentz invariance for the electron, Holger Müller, Sven Herrmann, Alejandro Saenz, Achim Peters, and Claus Lämmerzahl, Phys. Rev. D 68, 116006 (2003). arxiv:hep-ph/0401016.
  3. Precision test of the isotropy of light propagation, Holger Müller, Sven Herrmann, Claus Braxmaier, Stephan Schiller, and Achim Peters, Appl. Phys. B 77, 719 (2003).
  4. Offset compensation by amplitude modulated sidebands in optical freqüncy standards, Holger Müller, Sven Herrmann, Thilo Schuldt, Matthias Scholz, Evgeny Kovalchuk, and Achim Peters, Opt. Lett. 28, 2186 (2003).
  5. Modern Michelson-Morley experiment using cryogenic optical resonators, Holger Müller, Sven Herrmann, Claus Braxmaier, Stephan Schiller, and Achim Peters, Phys. Rev. Lett. 91, 020401 (2003). arxiv:physics/0305117.
    • Secondary reports about this work
      • Adrian Cho, Special relativity reconsidered, Science 307, 866 (2005).
      • V.A. Kostelecky, The Search for Relativity Violations, Scientific American Sept. 2004, p. 93 (2004).
      • Philip Ball, Quantum gravity: Back to the future, Nature 427, 482 - 484 (2004).
      • Robert Bluhm, Breaking Lorentz Symmetry, Physicsworld Feature, Mar. 10, 2004.
      • Phil Schewe, James Riordon, and Ben Stein, The most precise Test Yet of Special Relativity, AIP Physics News Update 590, May 21, 2002.
      • Framing Lorentz Symmetry, CERN courier Nov. 24, 2004.
      • Robert Kunzig, Testing the Limit of Einstein's Theories, DISCOVER magazine 09/30/2004.
  6. Electromagnetic cavities and Lorentz invariance violation, Holger Müller, Claus Braxmaier, Sven Herrmann, Achim Peters, and Claus Lämmerzahl, Phys. Rev. D 67, 056006 (2003).
  7. New Optical Tests of Special Relativity. Holger Müller, Sven Herrmann, Stephan Schiller, and Achim Peters; P. Hannaford, A. Siderov, and K. Baldwin (editors): Proc. ICOLS XVI, Int. Conf. on Laser Spectroscopy, Palm Cove, Australia, July 2003, 71-74 (2003).
  8. Improved optical test of special relativity. Holger Müller, Sven Hermann, Claus Braxmaier, Stephan Schiller, and Achim Peters, European Quantum Electronics and Laser Science Conference, Munich, Germany, June 2003, Europhysics Conference Abstracts 27E, EF4-1-FRI3.
  9. New Optical tests of Relativity on Earth and in Space. Achim Peters, Holger Müller, Sven Hermann, Claus Braxmaier, Stephan Schiller, H. Dittus, and Claus Lämmerzahl, Proc. XXXV Recontres de Moriond, LesArcs, France (Ed. Fronti & Egraveres) (2003).

2002

  1. Kinematical test theories for Special Relativity: A comparison. Claus Lämmerzahl, Claus Braxmaier, Hansjörg Dittus, Holger Müller, Achim Peters, and Stephan Schiller, Int. J. Mod. Phys. D 11, 1109 (2002).
  2. Konstanz der Lichtgeschwindigkeit neu bestätigt. Claus Braxmaier, Holger Müller, Achim Peters, and Stephan Schiller, Physik in unserer Zeit, 33, Jahrgang, Feb. 2002.
  3. Testing the foundations of rela¬tivity using cryogenic optical resonators. Holger Müller, Claus Braxmaier, Sven Herrmann, Oliver Pradl, Claus Lämmerzahl, Jür¬gen Mlynek, Stephan Schiller, and Achim Peters, Int. J. Mod. Phys. D 11, 1101-1108 (2002).
  4. New Tests of Relativity Using a Cryogenic Optical Resonator. 46. Claus Braxmaier, Holger Müller, Oliver Pradl, Jürgen Mlynek, Achim Peters, and Stephan Schiller, Phys. Rev. Lett. 88, 010401 (2002).
    • Secondary reports about this work
      • J.R. Minkel, Peering over Einstein's shoulders, Scientific American.com Story June 24 (2002).
      • P. Schewe, James Riordon, and Ben Stein, A New Limit on the Overall Validity of Special Relativity, AIP Physics News Update 571 #1, Jan. 2, 2002.
      • Katie Pennicot, Cool Laser puts Special Relativity to the Test, Physicsworld Headline News, Jan 8, 2002.
      • Frank Grotelüschen, Einstein auf dem Prüfstand, German Public Radio Broadcast of 5. July, 2002
      • Speed of Light passes updated Test with Flying Colors, CERN courier 42, 10 (2002).
      • Veronika Winkler, Einstein auf dem Prüfstand, Frankfurter Allgemeine Zeitung Feb. 06, 2002, p. N1 (in German).
      • Folco Claudi, Resiste la relativita ristretta, Le Scienze Februar 2002, p. 15 (2002) (in Italian).
      • Oliver Morsch, Einstein auf dem Prüfstand, Spektrum der Wissenschaft Jul. 2002, pp.12-15 (2002) (in German).
  5. New tests of relativity using cryogenic optical resonators. Holger Müller, Sven Hermann, A. Sunaga, Claus Braxmaier, Stephan Schiller, and Achim Peters, International Quantum Electronics and Laser Science Conference Technical Digest, Moscow, Russia June 2002, 376.
  6. New test of the isotropy of space using cryogenic optical resonators. Holger Müller, Sven Hermann, Claus Braxmaier, and Achim Peters, OSA Trends in Optics and Photonics (TOPS) 74, 2002 Quantum Electronics and Laser Science Conference, Long Beach, California, May 2002, OSA technical Digest, Postconference Edition (Optical Society of America, Washington, D.C., 2002) 18-19.
  7. Fundamental tests of relativity using cryogenic optical resonators. Holger Müller, Claus Braxmaier, Sven Hermann, Jürgen Mlynek, Stephan Schiller, and Achim Peters, Conference Digest of the 2002 Conference on Precision Electromagnetic Measurements CPEM, Ottawa, Canada, June 2002, 512-513.

2001

  1. Proposed test of the time-independence of the fundamental constants a and me/mp using monolithic resonators. Claus Braxmaier, Oliver Pradl, Holger Müller, Achim Peters, Jürgen Mlynek, and Stephan Schiller, Phys. Rev. D 64, 042001 (2001).
  2. Testing the foundations of special relativity using cryogenic optical resonators. Achim Peters, Claus Braxmaier, Holger, Müller, Sven Herrmann, and Jürgen Mlynek, Proc. ICOLS XIV (10.06-15.06.2001), Snowbird, USA.
  3. Testing the foundations of Relativity using cryogenic optical resonators. Stephan Schiller, Claus Braxmaier, Holger Müller, Sven Hermann, and Achim Peters, Proceedings of the 6th Symposium on Frequency Standrads and Metrology, St. Andrews, England, September 2001 (World Scientific, Singapore, 2001), 401-408.
  4. Testing the foundations of relativity using cryogenic optical resonators,. Holger Müller, Claus Braxmaier, Jürgen Mlynek, and Achim Peters, OSA Trends in Optics and Photonics (TOPS) 57, 2001 Quantum Electronics and Laser Science Conference, Baltimore, USA, May 2001, OSA Technical Digest, Postconference Edition (Optical Society of America, Washington, D.C., 2001) 99.
  5. Fiber-coupled cryogenic optical resonators. Claus Braxmaier, Oliver Pradl, Holger Müller, Achim Peters, Bernd Eiermann, and Stephan Schiller, 2000 Conference on Precision Electromagnetic Mesurement Digest, Instrumentation and Measurement Society Staff, Ed., Washington, D.C., 2000.
  6. Fiber-coupled cryogenic optical resonators. Claus Braxmaier, Holger Müller, Achim Peters, Jürgen Mlynek, and Stephan Schiller, Technical Digest of the 2000 International Quantum Electronics and Laser Science Conference, Nice, France, September 2000, 77 (2000).