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We study sub-part per billion systematic effects in a Bragg-diffraction atom in-

terferometer relevant to a precision-measurement of the fine-structure constant.
The multi-port nature of Bragg diffraction gives rise to parasitic interferome-
ters, which we suppress using a “magic” Bragg pulse duration. The sensitivity
of the apparatus is improved by the addition of AC Stark shift compensation,

which permits direct experimental study of sub-ppb systematics. This upgrade
allows for a 310~k momentum transfer, giving an unprecedented 6.6Mrad mea-
sured in a Ramsey-Bordé interferometer.

1. Introduction

Atom interferometers have been used for tests of fundamental physics,

such as the isotropy of gravity1, the equivalence principle2 (setting many

new limits on parameters of the Standard Model Extension3), and the

search for dark-sector particles4. The interferometer discussed here has

been described in detail before.5 Two cesium Ramsey-Bordé interferome-

ters (RBIs) are operated in a simultaneous conjugate configuration, with

each 2n-photon beamsplitter formed by a Bragg pulse that splits the atoms

by a total of 2n~k, where ~k is the photon momentum, without changing

the internal state of the atoms. A Bloch pulse is applied in the middle

of the sequence, to provide additional momentum splitting by 2N~k. The

interferometer has a total phase of (to leading order)

Φ = 16n(n+N)ωrT, (1)

where T is the separation time between the first and second laser pulses

(also equal to that between the third and fourth), and ωr = ~k2/(2m) is

the recoil frequency we seek to measure.
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2. AC Stark shift compensation

As the pulse separation time is increased, random distortions in the wave-

fronts at short distance scales (arising, e.g., from speckle) of the Bragg and

Bloch laser beams will result in spatially varying AC Stark shifts that lead

to decoherence. To suppress this effect, we apply a beam from the same

optical fiber as the Bragg and Bloch beams, with the same intensity but op-

posite single-photon detuning. This beam contains only a single frequency

and thus does not drive Bragg transitions or Bloch oscillations. This beam

compensates for the variable AC Stark shift.6

As a result, coherence can be observed with N = 75 up to a maximum

pulse separation time of T = 80ms, as shown in Figure 1. The momentum

splitting between the “fastest” and “slowest” arms of the interferometer is

2(n+ 2N)~k = 310~k, giving a Φ = 6.6Mrad - the largest measured phase

in any RBI. Not only does this upgrade allow a measurement of α with

a higher integration rate, it also permits the study of sub-ppb systematic

effects.
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Fig. 1. Contrast versus pulse separation time for N = 25 and N = 75 Bloch oscillations,

with and without AC Stark shift compensation.
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3. Parasitic Interferometers

Because Bragg diffraction populates more than the two desired momentum

states, it is possible to simultaneously create multiple RBIs. These interfer-

ometers will close at the same time as the main interferometer, and will not

be suppressed by the Bloch pulse. The effect of a single parasitic interfer-

ometer of order n1 on the outputs X,Y of a RBI of order n0 is a sinusoidal

variation of the measured recoil frequency. For an n0=5 RBI, the dominant

parasitic interferometer has a Bragg order of n1=1. The population driven

into an undesired order depends sensitively on the Bragg intensity and de-

tuning from Bragg resonance. A “magic” duration, see Figure 2, minimizes

this population and suppresses the parasitic interferometer, see Fig. 3.

80 100 120 140 160 180
0.00

0.01

0.02

0.03

0.04

Bragg Pulse Duration (μs)

R
e
la
ti
v
e
F
ra
ct
io
n
in
n
=
1

Fig. 2. Calculated fraction of atoms driven into n = 1 versus Bragg pulse duration (in
units of 95µs). This is a single-atom simulation, with the atom on Bragg resonance.
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Fig. 3. Suppression of parasitic interferometers by choosing the “magic” pulse duration.
Left: Simulation, Right: Experimental data
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4. Conclusion

We expect that the technology will make further contributions to testing

fundamental physics. Measuring the fine structure constant will contribute

to the search for dark-sector particles; measurements of the gravitational

Aharonov-Bohm effect7 and of short-range gravity8 appear feasible, and

further tests of the equivalence principle will be performed, e.g. in space9.

See also P. Asenbaum et al., these proceedings.
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