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Abstract

Tune-out measurement in lukewarm lithium with phase-patterned atom interferometry

by

Eric Allen Copenhaver

Doctor of Philosophy in Physics

University of California, Berkeley

Associate Professor Holger Müller, Chair

Atom interferometry deploys atoms as sensors, delivering precision measurements that
span the gamut of physics. Laser-cooled samples simplify uniform detection strategies and
allow meticulous control over degrees of freedom and systematic e↵ects. Advanced cooling
and interferometry techniques do apply readily to a few atomic species, but they leave be-
hind a large class of species otherwise suited for precision sensing. This thesis describes
atom interferometry with a sample of lukewarm 7Li, near the Doppler temperature. High
thermal speeds demand rapid atom optics and complicate detection. We nevertheless de-
velop interferometer techniques that considerably relax cooling requirements, including a
recoil-sensitive scheme capable of measuring the fine-structure constant that takes advan-
tage of 7Li’s low mass. We also establish a phase-patterning protocol to inscribe and sense
spatially-varying phases with matter-wave interferometers whose sample sizes exceed the arm
separation. Phase patterning forms the basis of the first precision measurement of 7Li’s red
tune-out wavelength, the wavelength where AC Stark shifts from the D-line transitions can-
cel and the polarizability vanishes. Our measurement registers a 3-� tension with ab initio

atomic theory regarding the tensor-shifted tune-out wavelength and a 2-� tension regarding
the size of the tensor shift, but agrees with theory regarding the scalar tune-out wavelength.
These results motivate further work on lithium’s polarizability, enable direct measurements
of hyperpolarizability, and empower an assortment of future applications of phase patterning
in matter-wave interferometry.



i

To Jackie
and future generations



ii

Contents

Contents ii

List of Figures vi

List of Tables ix

1 Motivation 1
1.1 Atomic antennae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Polarizing lithium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical tools 7
2.1 Lorentz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Two-level systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Semi-classical treatment . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Temporal evolution of eigenstates . . . . . . . . . . . . . . . . . . . . 11
2.2.3 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Coherent dynamics: Rabi oscillations . . . . . . . . . . . . . . . . . . 16
2.2.5 Atom optics: beam splitters and mirrors . . . . . . . . . . . . . . . . 17
2.2.6 AC Stark shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.7 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.8 Dipole oscillations and Optical Bloch Equations . . . . . . . . . . . . 21
2.2.9 Polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.10 Hyperpolarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Three-level systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Stimulated Raman transitions . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 The tune-out wavelength: polarizability, dipole oscillations, and hy-

perpolarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Many levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Clebsch-Gordan coe�cients and coupling strengths . . . . . . . . . . 38
2.4.2 Raman Rabi frequency and Clebsch-Gordan interference . . . . . . . 40



iii

2.4.3 Total polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.4 Total scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 The 7Li atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 D-line transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Mass and recoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.3 Zeeman shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.4 Clebsch-Gordan coe�cients . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.5 Unresolved D2 line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.6 The Hylleraas basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Atom interferometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.1 Simplified Ramsey interferometer . . . . . . . . . . . . . . . . . . . . 51
2.6.2 Simplified Mach-Zehnder interferometer . . . . . . . . . . . . . . . . 52
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Chapter 1

Motivation

1.1 Atomic antennae

Atoms are like little antennas. Charges within an atom shift in response to electric fields,
like charge carriers in an antenna responding to radio waves transmitting sound from Angus
Young or Jad Abumrad. A field shoves positive charges one direction and negative charges
the other. The perturbation on the relative positions of the charges sets up an electric dipole.
Should the field strike a resonant chord, the atom will likely undergo a quantum transition.
When tuned to a di↵erent beat, the atomic dipole will dance along – either in step or out,
depending on the frequency.

The dipole that light inspires in an atom serves two broad uses: as a handle that ex-
perimentalists leverage to manipulate atomic states and as a sensor that witnesses the local
field.

As a handle, resonant transitions can pump an entire ensemble into a pure internal elec-
tronic state and steer the atoms’ motion through momentum transfer. These capabilities
allow preparing atoms a mere fraction of a degree above absolute zero temperature. Further
control of the momentum thereafter can assemble superpositions of trajectories that yield
quantum interference between the paths of the atomic matter waves. So-called atom interfer-
ometry has matured into an accomplished tool in precision metrology, capable of searching

- +

+ -

DURACELL
QUANTUM

Figure 1.1: Polarizing an atom at home. A pair of paper clips attached to the terminals of a
battery generate an electric field. That DC field exerts opposite forces on an atom between
the clips. Not drawn to scale.
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for low-energy signatures of exotic physics.
As a sensor, atomic dipoles are capable of heralding the local electric field environment.

For example, a single atom can even tune in to radio signals [1].1 The o↵-resonant response
of the dipole also happens to fall within the purview of modern calculations. Combining
fundamental quantum mechanics and electrodynamics, ab initio atomic theory delivers pre-
dictions at a precision that is measurable by experiments. Peculiarities in the dipole response
therefore present an opportunity for measurements to stringently test atomic theory.

This dissertation will make full use of the atomic dipole response, both to engineer
quantum states and to sense fields in a test of atomic theory.

1.2 Polarizing lithium

The magnitude of an atomic dipole’s response to a field is called its polarizability. Polar-
izability is ubiquitous, appearing across atomic physics as a useful handle in optical dipole
traps [2, 3] and as a pesky nuisance through blackbody radiation shifts [4, 5, 6]. One might
expect that the charges should oscillate irrespective of frequency, that the polarizability
should always be nonzero. After all, atoms are always composed of electric charges and
those charges must obey the direction of electric fields. But atoms do not respond to every
frequency. Particular frequencies of light – an oscillating electric field – inspire no response2.
That is called a tune-out wavelength, where the polarizability vanishes altogether. This
dissertation is largely dedicated to precisely measuring one particular tune-out wavelength
for one particular atom.

Tune-out wavelengths are something of an ironic probe of polarizability, namely because
the polarizability there is known exactly; it is precisely zero. Pinpointing exactly where
the polarizability is zero, however, requires both theorists and experimentalists to develop a
mastery of their respective domains. Comparing experimental [7] and theoretical results [8,
9, 10, 11] for the tune-out wavelength of helium – a small and simple atom like lithium –
has inspired a rich and ongoing dialogue that incorporates deep physics.

Lithium, a unique species, can serve as a particularly powerful probe of atomic polar-
izability. Its three electrons are more than enough to keep theorists occupied, but di�cult
enough that lithium is the final frontier for many ab initio theoretical techniques. At the
same time, its single valence electron exhibits a hydrogen-like energy structure that lends
itself to the experimental prowess developed for alkali atoms. Lithium is one of a few sys-
tems where experiment and theory meet one another with such exactitude. The theory
of lithium’s polarizability [12, 13, 14, 15, 16] ultimately depends even on relativistic and
quantum-electrodynamic e↵ects [17, 18, 19, 20, 21, 22, 23].

Atom interferometers have measured the static polarizability of Li [24], as well as K, Rb,
and Cs [25]. Groups have also measured tune-out wavelengths recently for K [26, 27], Rb

1Only the most polarizable kind of atoms, Rydberg atoms, should be chosen for radio detection.
2As we will see in Sec. 2.2.8, there is an instantaneous response, but the time-averaged dipole response

vanishes.
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Figure 1.2: The first atom interferometers. In each of two 1991 experiments, the matter-wave
behavior of atoms produced interference fringes for the first time. (a) Carnal and Mlynek
built a Young’s double-slit interferometer for metastable helium (He⇤) [34] atoms can travel
along two paths in space to reach each final position at the detector. (b) Kasevich and Chu
built a light-pulse sodium atom interferometer along a single spatial dimension [35].

[28, 29, 30, 31], and Dy [32], but no one has attempted a tune-out measurement for Li prior
to this dissertation.

We should be wary of donning Li’s rose-colored glasses too blindly. Lithium can be
a thorny little atom to work with: assaulting viewports that cap its chambers, resisting
standard laser-driven manipulations that other atoms readily yield to, and traveling with
higher speeds than heavier species at a given temperature.

Here, we have adopted the circumstance as an opportunity to learn how to cope with
higher temperatures in atom interferometers. Though the sample’s temperature is a mere
fraction above absolute zero, well below 1 mK, it is lukewarm by cold-atom standards.3 This
dissertation demonstrates how to perform interferometry with lukewarm samples in multiple
geometries, as well as how to interpret the signals. In spite of the expansive obstacles, we
achieve the first measurement of tune-out wavelength in Li. Ours also happens to be the
tune-out measurement with the finest wavelength precision ever recorded, around 2 fm.4

Since interferometry is the method we employ to measure lithium’s tune-out wavelength,
we briefly introduce and justify it now.

1.3 Interferometry

Atoms are like little waves. This proposition dates back to Louis de Broglie’s 1924 PhD
dissertation pro↵ering that atomic momentum p bears a relationship to a wavelength � in
analogy to the relation that holds for light waves: � = h/p, where h is Planck’s constant.

3We are committed to referring to our sample’s temperature as “lukewarm” as a result of the work
reporting interferometry at room temperature [33].

4While this statement is true, it should not be received with as much fanfare as it might appear to
deserve. Each atom has a unique set of parameters that determine how sensitively the polarizability varies
with wavelength. Lithium is endowed with a much more highly-sloped polarizability than other species, so it
may come as no surprise that our wavelength precision finds no precedent from measurements in other species.
Lithium, of course, presents particular challenges as a direct result of that sensitivity, but we nevertheless
abstain from advertising that this is the most precise measurement to date because measurement precisions
across species are more-or-less incommensurate.
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Waves exhibit a few distinct phenomena – including delocalization and interference –
that can be employed to delocalize a wave’s path along multiple trajectories and build
metrological tools called interferometers. Paths that enclose an area are sensitive to rotation
in a ring laser gyroscope [36], as the recombination beam splitter recedes from one light path
and pursues the other. Interferometers that measure the path di↵erence along perpendicular
paths can sense gravitational waves [37].5. Even a mere pair of photons can show interference
e↵ects, demonstrable in Hong-Ou-Mandel interference [38]. Displaying interference only
requires that the constituents behave as waves and that there exist “optics”, or methods to
manipulate the waves’ trajectories. If atoms behave like waves, they too should interfere.

In May of 1991, Carnal and Mlynek were the first to detect atomic interference with
helium, constructing a double-slit experiment with transmission gratings [39] for atoms with
wavelengths at the 1-Å scale [34]. Atoms could travel along one of two trajectories to reach
the final detector at each position. The phase di↵erence between the paths determines the
interference condition, producing atoms to be detected for constructive interference and a
deficit of atoms for destructive interference (Fig. 1.2(a)). The double-slit experiment o↵ers
atoms two trajectories that separate in two spatial dimensions. Kasevich and Chu imagined
an interferometer in which pulses of laser light would resonantly kick an atom along a single
dimension. Similar atom-light di↵raction had already shown promise in the Pritchard group
[40, 41]. In order to stay within the pulsing beam, the atoms would have to enter the
interferometer at low velocity. Chu had recently demonstrated techniques to cool [42] and
trap [43] sodium atoms, also using lasers. Not two months after Carnal and Mlynek, Kasevich
and Chu demonstrated the first light-pulse atom interferometer [35]. The phase of the laser
beam that kicks the atoms imprints itself onto the matter wave, so they scanned the phase of
the laser and detected interference fringes in the atoms appearing in one of the two output
states (Fig. 1.2(b)). In both experiments, the matter wave travels along a superposition
of trajectories.6 Waves, after all, are delocalized entities, so atoms’ capacity to “be in two
places at once” should come as little surprise.7

Since 1991, atom interferometers have flourished as precision instruments. Atom inter-
ferometers can compete with laser interferometers in measuring rotation [52, 53, 54] and are

5I envied my parents’ generation as a kid. They saw humans first travel to the moon and anticipated
new Led Zeppelin albums hot o↵ the press. Many feats during my graduate career have ameliorated much
of that jealousy. One is the detection of gravitational waves in 2016. In other news, SpaceX first recovered
all three Falcon Heavy first-stage boosters in 2019 and Jacob Collier is melting faces on the regular.

6The term “atom interferometer” usually refers to an interferometer whose arms spatially separate [44].
Plenty of experiments exploit quantum interference phenomena of matter waves that travel along di↵erent
trajectories in Hilbert space, from atomic clocks to momentum-space interferometers in lattices [45].

7Superposition may seem surreal to many at first glance, but it is a generic feature of waves. My interest
in quantum foundations follows next, at the measurement problem [46]. Even if the quantum state is a
delocalized wave, measurements routinely record localized outcomes. Collapse theories that describe why a
measurement device records a single outcome might be of most interest to experimentalists, since they are
subject to experimental constraint. Ghirardi, Rimini, and Weber devised the first collapse theory [47] and
Sir Roger Penrose champions that superpositions of massive objects generate an instability in spacetime that
must collapse to one state [48]. Experiments to test collapse theories are under development [49, 50] and
even Stanford’s atom interferometer has weighed in [51].
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also under development as gravitational wave sensors [55, 56, 57]. Even Hong-Ou-Mandel
interference of pairs of atoms was recently demonstrated [58]. Atom interferometers have
some strong advantages over light interferometers since atoms interact gravitationally and
electromagnetically, perhaps as well as with fields yet to be discovered. While the arms’ dif-
ference in interactions may be small, atom interferometers translate them into measurable
phase shifts by integrating the frequency di↵erence over the interrogation time. Light-pulse
atom interferometers [59] have precisely measured gravity and inertial forces [52, 60, 61,
62, 63, 6, 64], gravity gradients [61, 65, 66, 67, 68], Newton’s gravitational constant G [69,
70, 71], the fine-structure constant ↵fsc [72, 73, 74], and a Rb tune-out wavelength [28,
29]; they have tested Einstein’s equivalence principle [75, 76, 77, 78, 79, 80, 81], Lorentz
invariance [82], severely constrained a dark energy model [83, 84], and have shown promising
progress toward improving these measurements with quantum entanglement [85, 86, 87].
The prevailing spirit of precision measurement is to search for signs of new physics and atom
interferometers are surely worth their weight in that vein.

Almost without exception [76, 88, 89], atom interferometers sum the signal in the output
ports to improve the signal-to-noise ratio. Interferometers are capable of sensing spatially-
varying signals in principle, but this summation averages out such signals. While one tech-
nique prints a phase gradient onto the output [88], it only facilitates readout of the average
phase of the ensemble.

In this dissertation, we devise and demonstrate a new method for reading out metrolog-
ically relevant spatial variations of the interferometer phase. The phase we measure results
from the coherent interaction of atoms with a laser beam. The signal source imprints a
spatially-varying phase gradient onto an atom interferometer that we use in a precision mea-
surement of a tune-out wavelength, the first tune-out measurement performed in 7Li. The
measurement result is intriguing, in 3-� tension with ab initio atomic theory. En route
to the tepid tune-out measurement, we also develop a tool kit of methods for interfering
lukewarm samples whose outputs cannot be individually detected, including one relevant for
recoil-sensitive interferometers that measure the fine-structure constant.

1.4 Organization of this dissertation

This dissertation primarily addresses three demographics: graduate students who want to
learn about atom interferometry, researchers interested in understanding or using phase
patterning, and folks endeavoring to work with lithium or lukewarm samples.

Chapter 2 describes the theoretical tools necessary to become a practitioner of atom
interferometry. Many of the derivations I provide may be found elsewhere, but I present
my own treatments with the strategies or motivation that I wish I would have seen as an
early-year graduate student. It begins with a thorough introduction to two-level systems.
The methods and results for two-level systems apply pervasively for quantum systems with
three and more levels, so the intuition we develop for two-level systems is a powerful skill
for atomic physicists. We see the polarizability, or AC Stark shift, for two level systems
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both with and without dissipation – results that extend intuitively to many-level systems
like atoms with a little care. Three levels reduce to two in stimulated Raman transitions.
We also explore hyperpolarizability, essentially the only e↵ect we consider that cannot be
recycled from a two-level treatment. The atomic physics culminates in the debut of the
7Li atom and its peculiarities. From there, a primer on the theory of atom interferometry
introduces readers to practical considerations regarding di↵erent geometries, their signals,
and their contrast.

Chapter 3 orients the audience to our apparatus, details our techniques, and catalogs
particular vagaries of our machine that may or may not be useful to other readers. Readers
who need to operate that specific experiment may find this chapter particularly useful,
though they should recognize that the litany is incomplete.

Chapter 4 introduces our first interferometry results, the world’s first cold-atom interfer-
ometer with lithium. Lithium’s low mass and high recoil frequency bestow an advantage in
recoil-sensitive interferometry, but the high thermal velocity spread complicates driving and
detecting the interferometer.

Chapter 5 explicates our precision measurement of 7Li’s red tune-out wavelength for
|2S1/2, F = 2,mF = 0i with �± polarization, as well as the phase-patterning technique we
develop to that end. We thoroughly study the systematics we considered in the measure-
ment. The tension with theory inevitably invites a critical evaluation of our methods, so we
endeavor to provide as much detail as might be useful.

Chapter 6 dreams of a future with liberal application of phase patterning and cold lithium
atom interferometers. In particular, we concoct a scheme to draw out 7Li’s hyperpolarizabil-
ity from a similar method to the tune-out measurement; motivate a tune-out measurement
near 323 nm and consider using 6Li; we imagine other applications of phase patterning in a
few arenas; we share some routes to improving our apparatus with extended interrogation
times; and we end with a path towards atom interferometers that have very long interro-
gation times, supported by a harmonic trap. No plan is fully conceived, but each should
contain enough information to pique interest in pursuing this future work.
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Chapter 2

Theoretical tools

This dissertation relies in many ways on the interaction of atoms with electric fields, both as
a handle for engineering quantum states and as a probe of atomic structure. In this chapter,
we will assemble the minimal theoretical understanding of that interaction that is required
to experimentally manipulate the quantum states.

We use the theory to develop a satisfactory conceptual and intuitive model for the inter-
play between the field and atom. Building a satisfactory model for the atom-light interaction
requires that we study familiar derivations like the Lorentz oscillator, the semiclassical two-
level system – which produces the AC Stark shift (with and without dissipation) and the
Optical Bloch Equations – and three-level systems like that required to understand stimu-
lated Raman transitions. These familiar checkpoints will lead this dissertation to develop
somewhat new approaches for a few phenomena, including the hyperpolarizability of two-
and three-level systems and a conceptual picture for the behavior of the atomic dipole driven
by the oscillating electric field of passing light. The latter presents an intriguing conundrum
regarding how an illuminated atom can have no dipole energy, yet still sport the non-zero
dipole moment implicated by single-photon scattering.

We will also develop some tools of practical interest to experimentalists, particularly
those working with 7Li and atom interferometers. Table 2.2 collects some of the ubiquitous
atomic parameters of 7Li and its interaction with light. For atom interferometers, standard
approaches yield the phase di↵erence, while we will also see a novel matrix formulation of
quantum amplitudes for modeling the contrast of di↵erent interferometer geometries.

Before we begin, let a primer set the mood for detailing atom-light interactions.
Atoms are composite particles, comprising a positively-charged nucleus and negatively-

charged electrons. An electric field ~E influences the dynamics of the system of charges and
polarizes it, forcing electrons in one direction and the nucleus in the other direction. That
is, the field induces a dipole moment ~d. The dipole moment is proportional to the field, with
the proportionality constant given by the polarizability ↵:

~d ⇡ ↵~E. (2.1)
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Figure 2.1: The Lorentz model treats an electron as harmonically bound to the nucleus.
This diagram evokes a lithium atom, with two 1S core electrons in light gray and a valence
electron in the 2S state, bound to the nucleus by a spring.

The total energy of the dipole in the field is given by integrating dU = �~d · d ~E,

U ⇡ �1

2
↵E

2

0
, (2.2)

assuming the dipole moment is induced parallel to the field and that the field has magnitude
E0. An oscillating electric field, or light, induces an oscillating dipole moment. The details
of this dipole interaction forms the basis for many concepts in this dissertation, from the
beam splitters that construct the atom interferometers to the tune-out wavelength measured
herein.

2.1 Lorentz oscillator

Let us begin with a fully classical treatment of atoms and their response to electric fields,
Lorentz oscillator model. While it is simplistic, it faithfully reproduces the response in the
far-detuned regime and establishes some basic intuition for the physics of the atom-field
interaction.

We know that electrons are bound to atomic nuclei in quantized orbits that are stable
to small perturbations. The Lorentz oscillator model treats that stability by regarding the
electrons as bound by a spring to the nucleus. If an electron ventures too far away or too
close to the nucleus, a restoring force encourages it back towards the stable orbit (albeit with
some damping �).

Consider an electron with charge e a distance x away from the nucleus, bound by a spring
with natural frequency !0 and damped at a rate �1. Driven at a frequency ! by a field with
amplitude E0, the equation of motion is

mẍ+m�ẋ+m!
2

0
x = �eE0e

�i!t
, (2.3)

where the massm is most properly the reduced mass of the system. To solve for the dynamics,
we assume a periodic response that follows the driving field, x = Ae

�i!t. Inserting this ansatz

1This damping rate can be shown to equal the spontaneous emission rate by comparison to Einstein’s
rate equation model. Lithium’s D-lines have � ⇠ 2⇡⇥5.87 MHz, which is considerably smaller than most
detunings we consider.
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A =
�e/m

!
2

0
� !2 � i�!

E0. (2.4)

The dipole moment is the product of the charge and the separation we just calculated
~d = e~x = ↵~E

2. The polarizability is therefore

↵ =
e
2
/m

!
2

0
� !2 � i�!

=

✓
e
2

m

◆
!
2

0
� !

2 + i�!

(!2

0
� !2)2 + �2!2

. (2.5)

The polarizability is a complex number. At a given frequency !, the imaginary part of
the polarizability adds a phase o↵set between the oscillator response x and the drive. The
complex angle ✓ of ↵ describes this phase o↵set and requires just a bit of geometry in the
complex plane.

tan(✓) =
�!

!
2

0
� !2

. (2.6)

The limiting cases highlighted in Fig. 2.2 provide some strong intuition for the response of
the oscillator. When ! ⌧ !0, the ratio on the right-hand side of Eq. (2.6) approaches 0 from
above, implying that the o↵set phase is approximately 0. The oscillator’s response is therefore
in phase with the drive for large red detunings. When ! � !0, the ratio takes on small but
negative values that approach 0 from below, implying that the o↵set phase approaches ⇡.
The oscillator responds to the drive 180� out of phase for large blue detunings.

The Lorentz oscillator model provides even more intuition than fits within the scope of
this introduction. One may use it to derive expressions for the line width of a transition, the
saturation intensity, and more [90]. For now, the main takeaway should be that the atom

2Of course, the lithium atom boasts a nuclear charge of +3e, but the two core electrons predominantly
screen two of the nuclear charges from the valence electron that implicitly interests us. Such details are of
little concern to us anyway, as we merely play with this toy model for some intuition.
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|a�

|b�
Δ

Figure 2.3: A system with two levels |ai and |bi at energies ~!a and ~!b is subjected to a
driving force with detuning � = ! � (!b � !a).

acts like an oscillator that responds in-phase with a red-detuned drive and out-of-phase with
a blue-detuned drive.

As a preview of coming attractions, consider a system sporting three levels. For three
levels, there are two transitions from the ground state to each of the two excited states.
Imagine a drive tuned to a frequency between the two transition frequencies. The drive is
blue-detuned from the lower-frequency transition and red-detuned from the higher-frequency
transition. The interaction with the drive comprises the interaction with each transition so
the total polarizability is just the sum of the polarizabilities from each transition. The
lower transition contributes oscillations largely out of phase with the drive while the upper
transition contributes oscillations largely in phase. Those oscillations superpose and cancel
at some a particular frequency. That is the essence of a tune-out wavelength, the frequency
at which the polarizability exactly vanishes due to an interference between response modes.

2.2 Two-level systems

The Lorentz oscillator is a fully classical treatment of an atomic system that is quantum
and should be treated as quantum. Treating an atom semi-classically – a quantum two-level
system driven by a classical light field – accesses much of the rich quantum dynamics used
throughout modern atomic physics. While we will assume the form of the field to be classical,
we will occasionally reason using the quantized energy and momentum of the photons in the
field.3

Interferometers generate multiple trajectories so that di↵erences in phase accrued along
the trajectories can be made measurable. Separating the trajectories requires imparting some
momentum to the atom. The original atom interferometer [34], as well as some contemporary
experiments [92, 24, 25], accomplished the momentum transfer by shooting high-speed atom
beams at microfabricated gratings. The gratings act similarly to light gratings, generating
constructive matter-wave interference at quantized output angles that satisfy the Bragg
condition [44, 93].

Light with a well-defined wave number k o↵ers an alternative method to transfer mo-
mentum. We must understand the dynamics of how light interacts with an atom in order
to use a light pulse to transfer momentum. Patiently solving the dynamics of the two-level
system provides powerful insights that are applicable throughout this dissertation. More

3A fully quantum treatment, for example in Ref. [91], defends those results.
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complicated multi-level systems cede a plethora of shortcuts to physicists with a careful
understanding of the two-level model.

2.2.1 Semi-classical treatment

Let us perform the semi-classical treatment here. The classical light field is simply an electric
field oscillating along a polarization direction ✏̂. The phase of the field may be o↵set by a
spatiotemporal laser phase �L = ~k ·~z�!t0 at position ~z with wave vector ~k and time t0. By
time t, the phase advances beyond �L at a fixed position by an amount !⌧ , where ⌧ = t� t0.

~E = E0 cos(!⌧ + �L)✏̂. (2.7)

The field acts on a two-level system with a ground state |ai and an excited state |bi. The
electric field induces a dipole ~d in the composite charged particle. The interaction of the
induced dipole with the field that induces it specifies the energy as

V̂ = � ~̂d · ~E. (2.8)

This interaction is only the lowest-order term in a larger multipole expansion. By regarding
it alone, we have made the electric dipole approximation (specifying to E1 transitions).
Quadrupole (E2), octupole (E3), etc. transitions are the results of the higher-order terms.

Each state has an associated time-dependent quantum amplitude ca and cb. The state

vector | i =
✓
ca

cb

◆
follows the dynamics of the Schrödinger equation under the influence of

the Hamiltonian Ĥ:

i~ d

d⌧
| i = Ĥ(⌧)| i. (2.9)

where ~ is the reduced Planck constant.

2.2.2 Temporal evolution of eigenstates

It is worth appreciating a feature of Eq. (2.9), a feature true even beyond two-level systems.
If the state | i happens to be an eigenstate of the Hamiltonian, then the Hamiltonian
leaves | i untouched and returns the energy eigenvalue. For these atomic eigenstates, the
Schrödinger equation implies that the temporal derivative of the state |si = |a(b)i is the
state itself with a multiplier �i!s. The solution is simply exp(�i!st). The corresponding
operator describing temporal evolution over a small time d⌧ must be

Û(⌧, d⌧) = e
�iĤ(⌧)d⌧/~ (2.10)

The operator expands to 1 � iĤ(⌧)d⌧/~, the second term acts on the state to return the
energy, and re-exponentiating the result returns exp(�i!sd⌧). Sequential application of these
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infinitesimal temporal evolutions results in a product of phase factors whose exponents sum
to the factor we expected

Û(⌧) = e
�iĤ⌧/~

, (2.11)

where we assume that the structure of the Hamiltonian is independent of time.4 In App. A,
we employ this evolution for a simpler treatment of a subset of interferometer phases that
avoids a more complicated treatment with the action.

2.2.3 The Hamiltonian

Having established the form for the field we will use, we can derive the Hamiltonian for the
semi-classical system. The Hamiltonian that describes the state dynamics includes a both
the atomic Hamiltonian with the states’ energies, as well as the interaction with the light
field.

The matrix elements of the interaction in Eq. (2.8) are constrained by parity. The induced

dipole operator looks like ~̂d ⇠ �e~̂r, where ~̂r is the separation of the electron from the nucleus
that we set at the origin. Consider the parity operator ⇧̂, which flips the sign of spatial co-
ordinates. Applying the parity operator to a state returns the parity eigenvalue of the state,
⇧ = +1 for spatially symmetric (even parity) states or ⇧ = �1 for states that flip sign under
spatial inversion (odd parity). The parity of an atomic orbit is connected to the famous parity
relation for spherical harmonics (⇧̂Y m

l = (�1)lY m
l ) and is +1 for atomic S states (l = 0) and

-1 for P states (l = 1). Regardless of which state the atom is in, ⇧̂|a(b)i = ⇧a(b)|a(b)i and
⇧2

a(b) = 1. That allows us to equate �eha(b)| ~̂r |a(b)i = �e⇧2

a(b)ha(b)|⇧̂†
~̂r ⇧̂|a(b)i. Those par-

ity operators could also transform the separation operator, ⇧̂†
~̂r ⇧̂ = �~̂r. Doing so leads us to

the conclusion that this matrix element equals its opposite, �eha(b)| ~̂r |a(b)i = eha(b)| ~̂r |a(b)i,
which is true only if these diagonal matrix elements are 0. The diagonal matrix elements for
the full Hamiltonian therefore only include the energies of the atomic states and contain no
influence from the interaction.

The o↵-diagonal matrix elements of the interaction are allowed to be non-zero. We

assume that the field induces an atomic dipole parallel to the polarization, ~̂d · ✏̂ = d̂.

hb|V̂ |ai = �hb|d̂|aiE0 (2.12)

We can express this energy as the product of Planck’s constant and a frequency. We define
the Rabi frequency ⌦ as the rate associated with the coupling between |ai and |bi:

⌦ ⌘ �1

~dbaE0, (2.13)

where we define the dipole matrix element dba = hb|d̂|ai = d
⇤
ab.

4When the Hamiltonian changes over time, it becomes more complicated. If the state adiabatically
evolves into eigenstates of the changing Hamiltonian, then a di↵erent energy is returned each d⌧ when
expanding the exponential. If the Hamiltonian changes too rapidly for the state to follow, that is unfortunate.
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The full Hamiltonian is5

Ĥ = ~
✓

0 ⌦ cos(�L � !⌧)
⌦⇤ cos(�L � !⌧) !b

◆
. (2.14)

The explicit time dependence in the Hamiltonian makes finding solutions to the Schrödinger
equation annoying. Some clever manipulation transforms away the time dependence. First,
we rewrite the cosines as a sum of counter-rotating exponentials.

iċa =
⌦

2
(ei!⌧�i�L + e

�i!⌧+i�L)cb, (2.15)

iċb =
⌦⇤

2
(ei!⌧�i�L + e

�i!⌧+i�L)ca + !bcb

i(ċb + i!bcb) =
⌦⇤

2
(ei!⌧�i�L + e

�i!⌧+i�L)ca (2.16)

The left-hand side of Eq. (2.16) looks almost like it behaves as the derivative of a complex
exponential, albeit without the exponential factor. Multiplying both sides by e

i!b⌧ makes
the equation more convenient.

i(ei!b⌧ ċb + i!be
i!b⌧cb) =

⌦⇤

2
(ei(!+!b)⌧�i�L + e

�i�⌧+i�L)ca,

where the detuning is the di↵erence between the laser frequency and transition frequency

� ⌘ ! � (!b � !a). (2.17)

Having referenced energies to !a, we have � = !�!b. The left-hand side now fully motivates
the change of variable

c̃b ⌘ e
i!b⌧cb, (2.18)

for which ˙̃cb = e
i!b⌧ ċb + i!be

i!b⌧cb. The equations of motion with this transformed variable
become

iċa =
⌦

2
(ei�⌧�i�L + e

�i(!+!b)⌧+i�L)c̃b, (2.19)

i ˙̃cb =
⌦⇤

2
(ei(!+!b)⌧�i�L + e

�i�⌧+i�L)ca. (2.20)

Atomic dipole transition frequencies are in the hundreds of THz. The phase factor
involving the sum of frequencies drives dynamics on inaccessible time scales that e↵ectively

5This may appear at first to be a strange choice of sign. The motivation for doing so is to remain
consistent with describing the laser phase as �L = ~k · ~z�!t0, which advanced in time with the same sign as
�!⌧ up to the moment of the interaction.
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average out. Neglecting those terms constitutes the rotating wave approximation (RWA)6.

ie
�i�⌧

ċa =
⌦

2
e
�i�L c̃b, (2.21)

i ˙̃cb =
⌦⇤

2
e
i�Le

�i�⌧
ca. (2.22)

The time dependence is not fully extinguished, but one more change of variables appears
promising:

c̃a ⌘ e
�i�⌧

ca, (2.23)

for which ˙̃ca = e
�i�⌧

ċa � i�e
�i�⌧

ca. The fully transformed equations have no more explicit
time dependence.

i ˙̃ca =
⌦

2
e
�i�L c̃b +�c̃a, (2.24)

i ˙̃cb =
⌦⇤

2
e
i�L c̃a. (2.25)

Written in the form of the Schrödinger equation, we see the ubiquitous rotating-frame Hamil-
tonian for a two-level system under the RWA.

i

✓
˙̃ca
˙̃cb

◆
=

✓
� e

�i�L⌦/2
e
i�L⌦⇤

/2 0

◆✓
c̃a

c̃b

◆
(2.26)

Guess the Hamiltonian with dressed states

There is a shortcut for expediently guessing the rotating-frame Hamiltonian in Eq. (2.26).
The trick utilizes the dressed-state basis. The driven two-level system includes both the
atomic system with states |ai and |bi, as well as the light field. The energy of the full system
is the energy of the atomic state and the field. Consider the two lowest energy states: |+i
with an atom in |ai plus one photon and |�i with an atom in |bi with no photon. We can
move the reference energy as we please, so we choose to subtract out the upper state energy
~!b. The newly referenced energies become

U+ = ~!a + ~! ! Ũ+ = ~(! � (!b � !a)) = ~�, (2.27)

U� = ~!b ! Ũ� = 0. (2.28)

These are precisely the diagonal entries in the Hamiltonian. Employing this trick later will
aid in reasoning towards the Hamiltonian for a three-level system in a rotating frame.

6There is a physical manifestation of the terms that the RWA neglects, called the Bloch-Siegart shift.
The e↵ect looks like an AC Stark shift ~⌦2/4�, with a more highly suppressed denominator, ~⌦2/4(!+!b)
[90].
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The amplitudes

We now seek solutions for the amplitudes. Di↵erentiating Eq. (2.25) with respect to time
and inserting Eq. (2.24) in the ensuing appearance of ˙̃ca leads to

i¨̃cb =
⌦⇤

2
e
i�L

✓
�i

✓
⌦

2
e
�i�L c̃b +�c̃a

◆◆
. (2.29)

Eq. (2.25) donates a substitution for c̃a.

i¨̃cb =
⌦⇤

2
e
i�L

✓
�i

✓
⌦

2
e
�i�L c̃b + i

2�

⌦⇤ e
�i�L ˙̃cb

◆◆
. (2.30)

¨̃cb + i� ˙̃cb +
|⌦|2

4
c̃b = 0. (2.31)

The vanishing sum of consecutive derivatives suggests an exponential solution c̃b = Be
if⌧ .

Then, f 2 +�f � |⌦|2/4 = 0 and the two solutions are f± =
⇣
��±

p
|⌦|2 +�2

⌘
/2. The

general solution is a sum of the two independent solutions c̃b = B�e
if�⌧ + B+e

if+⌧ . We will
define the generalized Rabi frequency

⌦0 ⌘
p

|⌦|2 +�2 (2.32)

so that
c̃b = e

�i�⌧/2(B�e
�i⌦0⌧/2 +B+e

i⌦0⌧/2). (2.33)

Initial state |ai

With the general solution in hand, consider the dynamics for an atom initially in |ai. That
is, ca(⌧ = 0) = 1 and cb(⌧ = 0) = 0. This respects the normalization that must be satisfied
at all times |ca|2+ |cb|2 = 1. At ⌧ = 0, cb = c̃b = 0 = B�+B+, so we define B ⌘ B� = �B+.
At time ⌧ ,

c̃b = �e
�i�⌧/2

B

⇣
e
i⌦0⌧/2 � e

�i⌦0⌧/2
⌘
= �e

�i�⌧/22B sin(⌦0
⌧/2) (2.34)

Di↵erentiating this and substituting into Eq. (2.25) yields

� i2B

✓
�i
�

2
e
�i�⌧/2 sin(⌦0

⌧/2)� e
�i�⌧/2⌦

0

2
cos(⌦0

⌧/2)

◆
=
⌦⇤

2
e
i�L c̃a, (2.35)

which, upon inserting ⌧ = 0, implies

B = ie
i�L
⌦⇤

2⌦0 . (2.36)

The amplitude transferred from |ai to |bi is therefore

cb = �ie
�i!b⌧e

�i�⌧/2
e
i�L
⌦⇤

⌦0 sin(⌦
0
⌧/2) (2.37)

We can insert this solution into Eq. (2.25) and solve for ca.

ca = e
i�⌧/2

✓
cos(⌦0

⌧/2)� i
�

⌦0 sin(⌦
0
⌧/2)

◆
(2.38)
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Initial state |bi

A similar procedure produces the amplitudes if the atom begins in |bi. Di↵erentiating Eq.
(2.24) and inserting Eq. (2.25) into the resulting appearance of ˙̃cb gives

¨̃ca + i� ˙̃ca +
|⌦|2

4
c̃a = 0. (2.39)

This is again solved by the general solution c̃a = B
0
�e

if�⌧ + B
0
+
e
if+⌧ . Since at ⌧ = 0,

c̃a = ca = 0, we see that B0 ⌘ B
0
� = �B

0
+
and c̃a = �e

�i�⌧/22B0 sin(⌦0
⌧/2). We di↵erentiate

that solution as before, but now substitute Eq. (2.24) and solve for B0 using ⌧ = 0, at which
c̃a = 0 and c̃b = 1. The result is

B
0 = ie

�i�L
⌦

2⌦0 . (2.40)

The amplitude for transferring from |bi to |ai is

ca = �ie
i�⌧/2

e
�i�L

⌦

⌦0 sin(⌦
0
⌧/2). (2.41)

We insert this result into Eq. (2.24) and solve for cb, the amplitude for starting and staying
in |bi,

cb = e
�i!b⌧e

�i�⌧/2

✓
cos(⌦0

⌧/2) + i
�

⌦0 sin(⌦
0
⌧/2)

◆
. (2.42)

2.2.4 Coherent dynamics: Rabi oscillations

The complex amplitudes we have just derived provide important insight into the dynamics
of the system. Their norm gives the probability for finding the system in each state (Born’s
rule). For an atom initially in the ground state, the atom oscillates between the ground and
excited state. The probability of transferring an atom from |ai to |bi follows from Eq. (2.37).

|cb|2 =
|⌦|2

⌦02 sin2(⌦0
⌧/2). (2.43)

The system starting in state |ai oscillates between the two levels at a frequency of ⌦0

(Fig. 2.4, left). When the system is in |ai, illuminating the system longer increases the
chance that the drive stimulates the system to absorb the light. Once the system is in |bi,
longer illumination increases the chance of stimulated emission. These cycles of stimulated
absorption from |ai to |bi and subsequent stimulated emission from |bi back to |ai are called
Rabi oscillations.

One may also look at the spectral characteristics of the population transfer (Fig. 2.4
left). When the drive frequency matches the system’s resonance, a pulse duration chosen
to satisfy ⌦⌧ = ⇡ maximizes the transfer probability. For the same pulse time, non-zero
detunings produce less response.
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Figure 2.4: Left: A two-level system starting in |ai oscillates into |bi and back at a freqeuncy
⌦0 =

p
⌦2 +�2. The frequency and maximum amplitude of the oscillations depend on the

detuning from resonance. Right: The response to a particular pulse duration (here a ⇡ pulse
on resonance) varies with detuning. The suppressed response for nonzero detuning can be
partially compensated by choosing a longer pulse length.

2.2.5 Atom optics: beam splitters and mirrors

The population dynamics above o↵er a handle we can use to manipulate the quantum state
of an atom. Critically, we must also recognize that light carries momentum, ~k per photon
to be precise. Momentum must be conserved in the interaction, so if the atom is stimulated
to absorb a photon, the atom must also absorb its momentum. That is, the atom must recoil
at a speed vr,

vr = ~k/m. (2.44)

The coupled states are more appropriately labeled by both their internal energy state and
their momentum. For an atom initially moving at speed v0 along the light’s propagation
direction, the light field couples

|a,mv0i $ |b,mv0 + ~ki. (2.45)

This can be explicitly shown by quantizing the electromagnetic field and approaching the
two-level system from a fully quantum perspective [91]. Atom interferometers employ this
momentum transfer to manipulate the path of atoms, impelling one state to recoil away from
the other in space and time.

Tuning the interaction time ⌧ manipulates the system into superpositions of the two
states at will. Two particular operations are germane to interferometers: beam splitters
and mirrors. These are named in analogy to the optical components in light interferometers
that manipulate the path of the beam. The beam splitter mixes each input path into a
combination of two output paths. The mirror takes one input path and outputs an alternative
path.

The operators that describe these atom optics are special cases of the amplitudes in Eqs.
(2.37), (2.38), (2.41), and (2.42). We define these operators for conditions idealized in two
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ways. First, the interaction time ⌧ evidently introduces a phase to the amplitudes. We
assume, however, that the interaction only requires an infinitesimally short time to occur,
at least compared to the rate at which the phase accrues on the amplitude (!b⌧ ! 0). Even
if the phase this neglects is non-zero, it will only contribute a constant phase o↵set as long
as the pulse duration remains stable across iterations of the experiment. It is possible to
treat the pulse as one with finite duration and solve for the phase o↵set it produces in an
interferometer [94], but that phase o↵set is inconsequential for the work presented here.7

Second, we assume that the interaction is on resonance, � = 0. The factor sin(⌦0
⌧/2) is

1/
p
2 when the pulse area

⌦⌧⇡/2 ⌘ ⇡/2, (2.46)

called a “⇡/2 pulse” or “beam splitter” Ŝ. Alternatively, sin(⌦0
⌧/2) is 1 when the pulse area

⌦⌧⇡ ⌘ ⇡, (2.47)

called a “⇡ pulse” or “mirror” M̂ . The operators that act on the state | i are

Ŝ(�L) =
1p
2

✓
1 �ie

�i�L

�ie
i�L 1

◆
, (2.48)

M̂(�L) =

✓
0 �ie

�i�L

�ie
i�L 0

◆
. (2.49)

It may also be useful to define the operator more generally for readers interested in accounting
for di↵erent atoms’ behavior in an ensemble as in Fig. 2.9, using Eqs. (2.37), (2.38), (2.41),
and (2.42).

Both beam splitters (Eq. (2.48)) and mirrors (Eq. (2.49)) evidently imprint the initial
phase of the light field �L onto the amplitude of the quantum state. Depending on whether
the system transitions from |ai ! |bi or |bi ! |ai, the sign with which the phase imprints
onto the state is opposite. Accounting for this phase is crucial in atom interferometry. The
phases of the laser that drive the atom optics inform the total phase shift the interferometer
records.

2.2.6 AC Stark shift

A final and crucial consequence of the Hamiltonian in Eq. (2.26) is that it shifts the energy
levels of the system. It has o↵-diagonal components, implying that the basis states we chose
are not eigenstates. Diagonalizing the Hamiltonian delivers the energies of the eigenstates
⇤, which allow us to calculate the matter-wave phase by simply evolving those eigenstates
in time as in App. A

����
�� ⇤ e

i�L⌦/2
e
�i�L⌦⇤

/2 �⇤

���� = (�� ⇤)(�⇤)� |⌦|2/4 = 0, (2.50)

7Unless it is unstable, either through a pulse duration that changes from shot to shot, or from instability
in �.
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for which the eigenenergies become

~⇤± =
~�
2

±
~
p
�2 + |⌦|2

2
. (2.51)

Atomic physicists frequently work in a far-detuned regime where |�| � |⌦|. There,
we can approximate the root with an expansion

p
�2 + |⌦|2 = �

p
1 + |⌦|2/�2 ⇡ �(1 +

(1/2)|⌦|2/�2+ ...). Inserting this approximate result into the eigenenergies above and ignor-
ing the o↵set ~� of the ground state, we find that the ground state is shifted by an energy
called the AC Stark shift

�UAC = ~ |⌦|
2

4�
. (2.52)

Recall that the Rabi frequency ⌦ is proportional to the magnitude of the light’s electric
field. The AC Stark shift is therefore proportional to the intensity of the light. Furthermore,
the shift follows the sign of the detuning. The AC Stark shift is stabilizing (i.e. produces
negative energy shifts) at negative detunings for which the photon energy is lower than the
transition energy. Gradients in intensity produce gradients in the AC Stark shift, so focused
laser beams detuned far below the transition form attract atoms into the lowest energy state
where the intensity is highest. This constitutes an optical dipole trap (ODT) [2], sometimes
called a far o↵-resonant trap (FORT) [3].

Stated more generally, ⌦ is proportional to the strength of the coupling between the two
levels. While the coupling strength varies with the intensity, it is also proportional to the
strength of the dipole transition dab. That dipole matrix element depends on the geometry
of the two atomic states being coupled, a contribution quantified in part by Clebsch-Gordan
coe�cients. The dependence of the AC Stark shift on Clebsch-Gordan coe�cients will be
critical for computing atomic polarizabilities beyond the two-level model.

2.2.7 Dissipation

The AC Stark shift as written in Eq. (2.52) diverges for small �, which we must somehow
reconcile on the grounds that it is clearly unphysical. The finite-energy field and atom surely
do not interact to produce a new infinite-energy system, so the model must neglect relevant
physics near resonance. One candidate is damping, which was included in the Lorentz
model. The excited states of the atom that concern us typically decay rather quickly, in
a time ⌧� = 1/� ⇠ 30 ns. We have not accounted for this source of dissipation since our
consideration of the Lorentz oscillator model, so we include it here. We argue for how to
include this decay phenomenologically, starting with the observation that an atom in the
excited state |bi decays at a rate �. After a time t, the probability that the atom remains
in |bi must fall as |cb|2 / e

��t. The bare state amplitude evloves as the exponential e�i!bt.
If the energy term in the exponent had contained an imaginary component �i�/2, then
the amplitude’s evolution would follow e

�i(!b�i�/2)t = e
�i!bte

��t/2. Upon squaring such an
amplitude, we would have |cb|2 / e

��t. Thus, an imaginary component to the state energy



CHAPTER 2. THEORETICAL TOOLS 20

−30 −20 −10 0 10 20 30
Δ/Ω

ΔUAC / ħ (MHz)

Figure 2.5: Two-level AC Stark shift with damping. The AC Stark shift for a two-level
system no longer diverges close to resonance upon accounting for damping. The shift here
is shown for ⌦ = 1 MHz and � = 6 MHz and has extrema of approximately ±0.042 MHz.

produces the decay we seek to describe.8 In the rotating frame, we can account for disippation
by modifying the Hamiltonian

ˆ̃
H ! ~

✓
� e

i�L⌦/2
e
�i�L⌦⇤

/2 �i�/2

◆
(2.53)

Now we obtain eigenfrequencies,

⇤± =
�� i�/2

2
±
p
(�� i�/2)2 + |⌦|2 + i2��

2
=
�� i�/2

2
±
p
(�+ i�/2)2 + |⌦|2

2
. (2.54)

The AC Stark shift is the shift referenced to the state energy at zero field. The first term is
therefore irrelevant and we study the second term, subtracting its zero-field value at |⌦|2 ! 0.

�UAC = ~Re

1

2

p
(�+ i�/2)2 + |⌦|2 � 1

2
(�+ i�/2)

�
. (2.55)

Only the real part of the expression describes the observable energy shift, which is not readily
identifiable because of the root. To discern the real part, we set

p
(�+ i�/2)2 + |⌦|2 = a+ib

and solve for a. Squaring both sides and equating the real components gives a
2 � b

2 =
�2 � �

2
/4 + |⌦|2, while equating the imaginary components gives b = ��/2a. Inserting b

into the previous condition gives a quadratic equation for (a2) whose roots are

a
2 =

1

2
(�2 � �

2
/4 + |⌦|2)± 1

2

p
(�2 � �2/4 + |⌦|2)2 + �2�2. (2.56)

Here, we choose only the + root because the � root gives an imaginary a and that would be
counterproductive. Alongside the real part �/2 of the second term in Eq. (2.55), taking the
square root of a2 presents another sign choice. That sign we choose di↵erently depending on
the sign of �. The positive root is appropriate when � > 0, but the energy shift diverges
for � < 0 due to the �/2 term. Multiplying by the sign of � skirts the issue.

�UAC =
~p
8

✓
�

|�|

◆q
(�2 � �2/4 + |⌦|2) +

p
(�2 � �2/4 + |⌦|2)2 + �2�2 � �

2
(2.57)

8This reasoning extends into the rotating frame.
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The form of Eq. (2.57) is regrettably opaque. Fig. 2.5 illustrates the behavior around
resonance, which no longer diverges like Eq. (2.52).

Notably, the behavior is only substantially di↵erent near resonance. For detunings much
larger than the line width, it is su�cient to employ Eq. (2.52).

2.2.8 Dipole oscillations and Optical Bloch Equations

We first attempted to establish an intuitive understanding of how the atomic dipole responds
to the optical drive by studying the Lorentz oscillator model. That model did include
dissipation, albeit in a fully classical system. In the previous section, we developed the
capability to include dissipation in a quantum model. A quantum model with dissipation
should produce more accurate results for the dipole’s behavior compared to the classical
Lorentz oscillator.

What we seek here is the quantum expectation value of the dipole moment of the atomic
state | i:

hdi = h |d̂| i = (hb|c⇤b + ha|c⇤a)d̂(ca|ai+ cb|bi) = c
⇤
bcadba + c

⇤
acbd

⇤
ba. (2.58)

Solving for the dynamics of the dipole’s expectation value will lead us to the Optical Bloch
Equations. Note that Eq. (2.38) for ca and Eq. (2.37) for cb are obsolete here because the
route to those solutions did not include damping.

The appearance of c⇤bca and c
⇤
acb inspires a pursuit of the dynamics of the density operator,

which is constructed from such terms.

⇢ = | ih | =
✓
ca

cb

◆�
c
⇤
a c

⇤
b

�
=

✓
|ca|2 cac

⇤
b

cbc
⇤
a |cb|2

◆
⌘
✓
⇢aa ⇢ab

⇢ba ⇢bb

◆
. (2.59)

Assuming the dipole matrix element is real dab = dba (and ⌦ = ⌦⇤) and stepping into the
rotating frame with the previous definitions in Eq. (2.18) and (2.23),

hdi = dab(c
⇤
bca + c

⇤
acb) = dab(c̃

⇤
b c̃ae

i!⌧ + c̃
⇤
ac̃be

�i!⌧ ) (2.60)

The density matrix elements may also be written in the rotating frame as ⇢̃ab = c̃ac̃
⇤
b and

⇢̃ba = c̃bc̃
⇤
a.

hdi = dab(⇢̃abe
i!⌧ + ⇢̃bae

�i!⌧ )

= dab(⇢̃ab(cos(!⌧) + i sin(!⌧)) + ⇢̃ba(cos(!⌧)� i sin(!⌧)))

= dab((⇢̃ab + ⇢̃ba) cos(!⌧) + i(⇢̃ab � ⇢̃ba) sin(!⌧))

= dab(u cos(!⌧)� v sin(!⌧)), (2.61)

where we have defined u to be the response of the dipole in phase with the field

u ⌘ ⇢̃ab + ⇢̃ba. (2.62)
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The quantity v is the magnitude with which the dipole responds 90� in advance of the field,
that is proportionally to the � sin(!⌧) instead of cos(!⌧),9

v ⌘ �i(⇢̃ab � ⇢̃ba). (2.63)

Note that we have set �L = 0 for simplicity.10 Another quantity of interest would be the
atomic populations. The variable w quantifies this, as +1 when the system is in |ai and �1
when the system is in |bi,

w ⌘ ⇢aa � ⇢bb = ⇢̃aa � ⇢̃bb. (2.64)

Just as the temporal derivatives of the amplitudes must obey the Schrödinger equation, so
must the temporal derivatives of the density matrix elements and their linear combinations.

u̇ = ˙̃⇢ab + ˙̃⇢ba = ˙̃cac̃
⇤
b + c̃a

˙̃c⇤b + ˙̃cbc̃
⇤
a + c̃b

˙̃c⇤a. (2.65)

We first address ˙̃⇢ab,
˙̃⇢ab = ˙̃cac̃

⇤
b + c̃a

˙̃c⇤b . (2.66)

Substituting ˙̃ca from Eq. (2.24) and for ˙̃c⇤b from (2.25),

˙̃⇢ab =

✓
�i
⌦

2
c̃b � i�c̃a

◆
c̃
⇤
b + c̃a

✓
i
⌦

2
c̃
⇤
a

◆

= i⌦w/2� i�⇢̃ab (2.67)

Inserting Eq. (2.67) into Eq. (2.65) and recognizing ˙̃⇢ba = ˙̃⇢⇤ab, we find

u̇ = ˙̃⇢ab + ˙̃⇢ba = i⌦w/2� i�⇢̃ab � i⌦w/2 + i�⇢̃ba = �v (2.68)

Similarly,

v̇ = �i( ˙̃⇢ab � ˙̃⇢ba) = �i (i⌦w/2� i�⇢̃ab � (�i⌦w/2 + i�⇢̃ba)) = ⌦w ��u. (2.69)

The dynamics of the populations
ẇ = ˙̃⇢aa � ˙̃⇢bb (2.70)

must also respect the normalization condition ⇢̃aa+ ⇢̃bb = 1, so ˙̃⇢aa+ ˙̃⇢bb = 0 and ˙̃⇢aa = � ˙̃⇢bb.
Therfore, ẇ = 2 ˙̃⇢aa = 2( ˙̃cac̃⇤a + c̃a

˙̃c⇤a). Using Eq. (2.24) for ˙̃ca and ˙̃c⇤a,

ẇ = 2

✓✓
�i
⌦

2
c̃b � i�c̃a

◆
c̃
⇤
a + c̃a

✓
i
⌦

2
c̃
⇤
b + i�c̃

⇤
a

◆◆
= �⌦v (2.71)

9Consequently, u < 0 implies a component of the response 180� out of phase with the field, while v < 0
describes a response that lags the field by 90�.

10The main incentive for including �L in the first place was to conclude that the laser phase is imprinted
on the matter wave during the interferometer. We are no longer concerned with the matter-wave phase and
only study the state dynamics in this section, with the consequence of dissipation in mind.
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Figure 2.6: Two-level system dipole response. The in-phase component u of the atomic
dipole for a system with 2000-MHz detuning from a transition with 7.62-mW/cm2 saturation
intensity and 5.87-MHz linewidth.

The dynamics of u, v, and w are the same as those that describe a spin in a magnetic
field, originally developed for studying nuclear magnetic resonance. We can view our two-
level quantum system as a spin on the “Bloch sphere”. The Bloch vector points up for an
atom in the ground state |ai and down for an atom in the excited state |bi. On the equator,
the atom is in an equal superposition of |ai and |bi. The spin precesses around a “laser
vector” – analogous to a magnetic field – whose z component gives the detuning and the
equatorial component describes the phase and strength of the drive.

These equations have yet to reference damping. As before, phenomenological arguments
guide its inclusion. The state |bi decays as |cb|2 = ⇢bb / e

��⌧ . That is, there is a decay
term proportional to the population in that state, ��⇢bb that should accompany the rate
⇢̇bb, ⇢̇bb ! ⇢̇bb � �⇢bb. In terms of ẇ = ⇢̇aa � ⇢̇bb = �2⇢̇bb,

ẇ !� 2(⇢̇bb � �⇢bb) (2.72)

= �2⇢̇bb + 2�
1

2
(1� w) (2.73)

= ẇ � �(w � 1). (2.74)

So ẇ evidently earns an additional ��(1�w). The decay of the Bloch vector from |bi ! |ai
sends the z component from -1 to +1, a di↵erence of 2. The coherent components u and v

decay to a value of 0 when the atomic stat is purely |ai, from a maximum absolute value of
1. So the u and v components decay half the amount in the same time as w. That is, their
decay rate is half that of w. Collecting all these decays and adding them in, we arrived at
the optical Bloch equations with the e↵ect of damping.

u̇ = �v � �

2
u, (2.75)

v̇ = ⌦w ��u� �

2
v, (2.76)

ẇ = �⌦v � �(w � 1). (2.77)



CHAPTER 2. THEORETICAL TOOLS 24

The equations above are di�cult to solve analytically. Numerically integrating the dif-
ferential equations with a simple Euler method11 provides powerful enough insight into the
behavior of the dipole. We simulate the dipole’s response for a 5.87-MHz linewidth, detuned
2000 MHz blue of a transition with 7.62-mW/cm2 saturation intensity and plot the results
in Fig. 2.6. The in-phase response u oscillates on short timescales (in a frame that rotates at
the laser frequency). On long timescales approaching the decay time, the oscillations damp
and the in-phase component settles to a nonzero value. The nonzero value of the atomic
dipole multiplies the electric field to produce a nonzero energy. That energy is the AC Stark
shift.

Steady-state solution

The dissipation damps the coherent oscillations in the driven system, so it eventually reaches
a steady state at long times, when all the time derivatives in Eqs. (2.75), (2.76), and (2.77)
are 0. Then there are three equations and three unknowns that admit an algebraic solution

0

@
u

v

w

1

A =
1

�2 + |⌦|2/2 + �2/4

0

@
⌦�
⌦�/2

�2 + �
2
/4

1

A (2.78)

Perhaps the most salient result from the steady-state solution is the excited state popu-
lation

⇢bb =
1� w

2
=

1

2

⌦2
/2

�2 + ⌦2/2 + �2/4
. (2.79)

Even as the Rabi frequency increases with drive intensity (⌦2 / E
2

0
/ I), the excited state

population saturates and asymptotes at a level of 1/2. It is helpful to define the intensity
I relative a resonant (� = 0) saturation intensity Isat,ab that parameterizes the transition
strength. It is the intensity that excites half of that maximum population in the steady
state, where ⇢bb = 1/4. There, ⇢bb = 1/(2 + �

2
/⌦2) = 1/4, so ⌦2 = �

2
/2 when I = Isat. For

general intensity, we write

⌦2 =
�
2

2

I

Isat,ab
. (2.80)

The intensity I is related to the electric field via

I =
1

2
c"0E

2

0
, (2.81)

so the saturation intensity must be related to the dipole matrix element by

Isat,ab =
c"0�

2~2
4d2ab

, (2.82)

11We verify that the response does not depend on the time-step size. Also, do not forget the minus sign
that lives in the Rabi frequency definition; without it, the signs flip inappropriately in the response.
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via the definition of the Rabi frequency in Eq. (2.13). The Rabi frequency depends on
intensity, which may vary with a laser beam’s profile. The peak intensity for a Gaussian
beam occurs at the center where it can be shown that

Ip =
2P

⇡wxwz
. (2.83)

The saturation intensity scales as / 1/d2ab. Saturation intensities for atomic systems are
generally stated for fine-structure transitions. For hyperfine transitions, the saturation inten-
sity should be modified to reflect the Clebsch-Gordan coupling coe�cient of the transition.

Scattering, cooling, and trapping

The scattering rate is the excitation rate at which atoms leave |ai for |bi, a rate of critical
importance to experimentalists trying to perform experiments before the universe (or a PhD
program) expires. The system must respect normalization at all times 1 = ⇢aa + ⇢bb, so
⇢̇aa = �⇢̇bb. The population of |bi still decays at a rate ��⇢bb, so the rate ⇢̇aa = �⇢bb.
Inserting the solution for ⇢bb from Eq. (2.79) and multiplying by �,

rsc =
�

2

⌦2
/2

�2 + ⌦2/2 + �2/4
. (2.84)

The scattering rate depends on the detuning from resonance �. This detuning may
be modified by a Doppler shift for an atom moving towards or away from a beam. An
“optical molasses” [42] illuminates atoms along opposing directions detuned to the red of
the transition. Only when the atom moves towards one of the beams will it see the beam
Doppler shifted to the blue closer to resonance and absorb photons and their momenta
opposing the motion of the atom. The range over which we may manipulate the absorption
through the Doppler shift is limited by the width of the resonance. That restriction limits
the minimum temperature achievable by an optical molasses to the Doppler temperature

TD =
~�
2kB

, (2.85)

with kB being the Boltzmann constant.
While an optical molasses lowers the speeds of atoms, it does not trap them. A magneto-

optical trap (MOT) [43] adds a magnetic field gradient into an optical molasses. On top of
the preference for scattering photons opposing an atom’s momentum, the spatially-varying
magnetic field also introduces a spatial dependence to the force. That allows an atomic
sample cooled by optical molasses to be spatially trapped, as well. The MOT is essentially
an optical molasses with added spatial confinement. Still relying on the Doppler e↵ect, it
too is limited to the Doppler temperature.
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2.2.9 Polarizability

The dipole’s energy in the field follows the polarizability, the coe�cient of the dipole energy
term proportional to E

2

0
– up to a factor -1/2 (see Eq. (2.2)). The AC Stark shift produces

an energy term proportional to E
2

0
with polarizability far from resonance

↵ = � d
2

ab

2~� =
1

8

c"0~�2
�Isat,ab

. (2.86)

To treat systems closer to resonance, one may consider expanding Eq. (2.57).
Eq. (2.86) deserves two main points of emphasis. First, the polarizability and the AC

Stark shift have opposite sign. This can be a useful fact for experimentalists attempting
to interface with theorists. Second, it depends on the squared dipole matrix element. Any
vagaries in the coupling strength will enter there, for example through Clebsch-Gordan
coe�cients.

Note that the atomic unit of polarizability in SI units is [16]

1 a.u. = 1.6487⇥ 10�41 C2s2/kg. (2.87)

2.2.10 Hyperpolarizability

We have thus far described the AC Stark shift is the energy perturbation due to the inter-
action between the two-level system and the drive, but that is not the full story. The dipole
energy of an atom is more truly a Taylor series expansion in the electric field. The treatment
of the AC Stark shift thus far has neglected the next term. If we include it, we find the
hyperpolarizability �.

�UAC = �1

2
↵E

2

0
� 1

24
�E

4

0
+ ... (2.88)

A term proportional to the fourth order in the electric field, or proportional to the square of
the optical intensity, arises as a result of the hyperpolarizability. Expanding Eq. (2.51) to the
next order reveals such a term / |⌦|4 / E

4

0
. The square root expands as �

p
1 + |⌦|2/�2 ⇡

�(1+ (1/2)|⌦|2/�2� (1/8)|⌦|4/�4+ ...). Equating the final term to the hyperpolarizability
term,

� 1

24
�E

4

0
= �1

8
~ |⌦|

4

�3
= �1

8

d
4

abE
4

0

~3�3
, (2.89)

we find the hyperpolarizability of the two-level system to be

� =
3d4ab
~3�3

=
3

256

c
2
"
2

0
~�4ab

�3I
2

sat,ab

. (2.90)

The utility of this formula is limited in this dissertation. We derive it simply identify the
origin of the hyperpolarizability, a response of the atomic dipole moment that is nonlinear
in the electric field, and to volunteer that it is a feature even of two-level systems.

Note that the atomic unit of hyperpolarizability in SI units is [95]

1 a.u. = 6.23538⇥ 10�65 C4m4
/J3. (2.91)
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Figure 2.7: Stimulated Raman transition level diagram. The arrows represent two laser
fields, whose wave vector and frequency are labeled. They couple two hyperfine ground
states at di↵erent momenta.

2.3 Three-level systems

We have treated atoms as two-level systems thus far. The treatment is insightful and pro-
duces many useful results, but atoms are not two-level systems. We can deepen our under-
standing of atomic dynamics by carefully extending our theoretical techniques for two-level
systems to three-level systems. Three-level systems are ubiquitous in this dissertation, from
the atom optics we use (stiulated Raman transitions) to the very foundation of the tune-out
wavelength. Treating three-level systems thoroughly here will pay dividends.

2.3.1 Stimulated Raman transitions

We begin our treatment of three-level systems by elucidating the dynamics of stimulated
Raman transitions. Note that atom interferometers need to generate superpositions between
only two levels, not three; one might consider driving an atom into a superposition of two
electronic states, a ground and excited state. In the alkali atoms, however, the excited
electronic states decay rapidly in ⇠30 ns [96], so this strategy severely limits the maximum
interrogation time. We should note that long-lived states excited by such single-photon tran-
sitions do present an exciting opportunity for interferometry on narrow-linewidth transitions
like those in Sr [97, 65, 57, 56]. The alkalis, on the other hand, demand a di↵erent strategy.

For the alkali metals’ superposed atomic states to be long-lived, we can choose to super-
pose two hyperfine states in the ground electronic state, here |2S1/2i.12 Their lifetimes are
a suitable .1 eternity. Interferometers require momentum transfer to generate separated
spacetime trajectories, but coupling the hyperfine states directly with a microwave would
not transfer an appreciable momentum13. Optical photons impart significantly more mo-
mentum, so we couple the hyperfine ground states via photons through an excited electronic
state that we will try not to populate. We will consider all those three levels here.

12The spectroscopic notation references the quantum numbers nLJ . The 2S + 1 superscript that often
precedes this notation is unnecessary for the alkali valence states we work with, since it is always 2.

13They couple via M1 magnetic dipole transitions, but not through a relatively stronger E1 electric dipole
transition because they have the same parity.
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Consider Fig. 2.7 that describes an atom in state |ai with another hyperfine state |bi
available and an excited electronic state |ei coupled to both |ai and |bi by an electric dipole
transition. Light of frequency !1 couples |ai and |ei with Rabi frequency ⌦1, while light of
frequency !2 couples |bi and |ei with Rabi frequency ⌦2. The two-photon detuning from
resonance is the di↵erence between the splitting of the laser frequencies and the splitting
between |ai and |bi,

� ⌘ (!1 � !2)� (!b � !a). (2.92)

Fig. 2.7 is a useful guide for writing the single-photon detuning as

� = !1 � !e = !2 � (!e � (!b + �)) (2.93)

so that �� � = !2 � (!e � !b).
We can employ the strategy in Section 2.2.3 to catalogue the energies of the photon-

dressed atomic states. There are three states to consider. First is the condition we will
consider the initial condition |+̌i, when the atom is in |ai and a photon of frequency !1 is
present. Then in the intermediate state |ěi, the atom absorbs the photon !1 so there are
no photons present and and the atom is in |ei. Finally in |�̌i, the atom emits a photon of
frequency !2 and falls into |bi. We move into a rotating frame by subtracting !2 + !b from
each state.

U+̌ = ~!a + ~!1 ! Ũ+̌ = ~ ((!1 � !2)� (!b � !a)) = ~�, (2.94)

Uě = ~!e ! Ũě = �~ (!2 � (!e � !b)) = ~(� ��), (2.95)

U�̌ = ~!2 + ~!b ! Ũ�̌ = 0. (2.96)

From these, we can immediately write down the Hamiltonian in a rotating frame.

i~ d
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@
c̃a

c̃b

c̃e

1

A , (2.97)

where each laser oscillator has its own laser phase �L(i) = ~ki · ~z � !it0.
As one could guess from the diagonal entries in the Hamiltonian, this particular rotating

frame is one with rotating amplitudes defined by

c̃a ⌘ e
�i�⌧

ca, (2.98)

c̃b ⌘ e
i!b⌧cb, (2.99)

c̃e ⌘ e
i(���+!e)⌧ce, (2.100)

given that we define the null energy as !a = 0.
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Adiabatic elimination

An approximation called adiabatic elimination facilitates solving the coupled equations of Eq.
(2.97). Many experimental authors describe adiabatic elimination as the assumption that
|ei remains unpopulated. That is not a particularly accurate description of the procedure in
general,14 so here we will follow the theorists of [98] (though we will assume that ⌦1 and ⌦2

are real for simplicity). The equation for c̃e is

˙̃ce + i(� ��)c̃e = � i

2
(ei�L(1)⌦1c̃a + e

i�L(2)⌦2c̃b). (2.101)

An “integrating factor” from introductory integral calculus solves this equation.

c̃e =

R ⌧

0
exp

⇣R t0

0
i(� ��)dt00

⌘ �
�i/2(ei�L(1)⌦1c̃a + e

i�L(2)⌦2c̃b)
�
dt

0

exp
�R ⌧

0
i(� ��)dt0

� (2.102)

=

R ⌧

0
exp (i(� ��)t0)

�
�i/2(ei�L(1)⌦1c̃a + e

i�L(2)⌦2c̃b)
�
dt

0

exp (i(� ��)⌧)
(2.103)

= � i

2
(ei�L(1)⌦1c̃a + e

i�L(2)⌦2c̃b)

R ⌧

0
exp (i(� ��)t0) dt0

exp (i(� ��)⌧)
. (2.104)

Adiabatic elimination consists in assuming that the dynamics of c̃a and c̃b are far slower than
the rapidly evolving exponential ei(���)t0 , so those terms can be treated as constants with
respect to the integral over t0. The final factor integrates to

✓
1

exp (i(� ��)⌧)

◆
exp (i(� ��)⌧)� 1

i(� ��)
=

1� exp (�i(� ��)⌧)

i(� ��)
⇡ 1

i(� ��)
. (2.105)

The approximation above is a freedom a↵orded by adiabatic elimination, since the expo-
nential term oscillates rapidly and averages out of the dynamics of interest. Adiabatic
elimination is fundamentally an assumption about timescales, not about populations as is
commonly reported. Finally, we assume that the frequencies are tuned far closer to two-
photon resonance than either is to single-photon resonance, |�| ⌧ |�|,

c̃e =
1

2�
(ei�L(1)⌦1c̃a + e

i�L(2)⌦2c̃b). (2.106)

Inserting this expression into the di↵erential equations for c̃a and c̃b, we find a two-level
system
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14It is true for the particular case where no amplitude starts in the excited state, which is admittedly the
case of interest. We take the opportunity to dive into the pedantry anyway.
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These dynamics look just like the two-level system dynamics in Eq. (2.26), with the single-
photon AC Stark shifts built in, the role of the detuning played by the two-photon detuning
� and the role of the Rabi frequency played by the two-photon Rabi frequency

⌦̌ ⌘ ⌦1⌦2

2�
. (2.108)

All the results from solving the two-level system’s dynamics carry over. For example, Rabi
flopping between the two levels occurs at the generalized two-photon Rabi frequency

⌦̌0 ⌘
q
�2 + ⌦2

1
⌦2

2
/4�2. (2.109)

Momentum transfer and resonance

The photon momenta k1 and k2 in Fig. 2.7 are opposite. This counter-propagating config-
uration imparts two photons’ momenta to the atom along the same direction. An atom in
|ai absorbs a photon with energy ~!1 and its momentum ~~k1, then emits a photon losing
energy ~!2 and its momentum ~~k2. The full momentum kick is ~(~k1 � ~k2), with magnitude
~(k1 + k2) because the photons propagate in opposite directions.

This transition must conserve both energy and momentum. Suppose the atom has initial
momentum p0 = mv0 and final momentum pf = mvf . A photon before the transition
contributes momentum ~k1 to the total initial momentum and a di↵erent photon contributes
momentum�~k2 to the final momentum. The momentum is conserved, somv0+~k1 = mvf�
~k2 and vf = v0 + ~(k1 + k2)/m. The transition also conserves total energy on resonance, so
~!1+~!a+mv

2

0
/2 = ~!2+~!b+mv

2

f/2. The photon frequencies are experimentally tunable,
so we use the momentum conservation condition for vf to solve for the laser frequency
di↵erence !1 � !2 that satisfies resonance.

!1 � !2 =

✓
!b +

⌦2

2

4�
� !a �

⌦2

1

4�

◆
+

~(k1 + k2)2

2m
+ (k1 + k2)v0. (2.110)

The laser frequency di↵erence should not only match the ground-state hyperfine splitting
(including AC Stark shifts for maximum transfer e�ciency), but must also account for the
recoil energy and the Doppler shift. Because the beams propagate along opposite directions,
the Doppler shifts an atom sees add. An atom moving to the right sees !1 Doppler shifted
to the red and !2 Doppler shifted to the blue. Those conspire to contribute with the same
sign to the two-photon detuning. Any nonzero center-of-mass velocity of a sample hv0i 6= 0
shifts the ensemble’s Raman resonance to meet the Doppler shfit (k1 + k2)hv0i.15

The di↵erence between the Raman beams is in the microwave domain, while each is in
the optical domain. Therefore, we can regard the wave numbers as e↵ectively equivalent
from the perspective of their momentum transfer

k ⌘ |k1|+ |k2|
2

⇡ |k1| ⇡ |k2|. (2.111)

15We note this here because we will see later that our sample does launch at a velocity hv0i ⇠ 1 m/s along
the Raman beam axis.
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Figure 2.8: Raman response compared to thermal Doppler bandwidth. The temperature of
the sample with 7-amu mass is 140 µK and the two-photon Rabi frequency shown here is
1.65 MHz for a ⇡ pulse time of 300 ns. These parameters are chosen to match the experiment
in this dissertation.

Doppler broadening

We have yet to consider the e↵ect of atoms’ velocity along the direction of the Raman beams.
Those velocities produce significant Doppler shifts that might push excessive velocities out
of resonance. Atoms in a thermal distribution occupy a speed (along one dimension) with
probability density described by the Maxwell-Boltzmann distribution

fMB(v) =

r
m

2⇡kBT
exp

�
�mv

2
/2kBT

�
, (2.112)

where T is the temperature, m is the atomic mass, and kB is the Boltzmann constant. This
is a gaussian distribution with a standard deviation

�v =

r
kBT
m

(2.113)

that sets the scale of thermal speeds. An atom with a velocity sees Doppler shifts on each of
the Raman beams, so a thermal speed can readily push an atom out of resonance with the
Raman transition. This is what is meant by the velocity selectivity of counter-propagating
Raman transitions, analyzed in Ref. [99].

To e�ciently drive Raman transitions for a whole sample, the bandwidth of the Raman
pulse must rival or exceed the Doppler-broadened bandwidth of the sample. The two-photon
response of an atom undergoing a stimulated Raman transition from |ai to |bi is

|cb|2 =
⌦̌2

⌦̌02
sin2(⌦̌02

⌧/2) =
⌦2

1
⌦2

2
/4�2

⌦2

1
⌦2

2
/4�2 + �2

sin2

✓q
⌦2

1
⌦2

2
/4�2 + �2⌧/2

◆
. (2.114)

We let the two-photon detuning equal the Doppler shift � = (k1+k2)v and plot the response
to a ⇡ pulse against the Maxwell-Boltzmann distribution in Fig. 2.8 (the spectral response
follows Fig. 2.4). To drive an e�cient pulse, the pulse response must have bandwidth equal
to or larger than the thermal distribution. To drive e�cient Raman transitions in this work,
we generate a high Rabi frequency by using substantial optical power concentrated in a
relatively small intensity waist, achieving ⇡/2 pulse times around 160 ns.



CHAPTER 2. THEORETICAL TOOLS 32

0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

τ / μs

‹Pb›

Figure 2.9: Raman pulse thermal dephasing. The temperature of the sample with 7-amu
mass is 140 µK and the two-photon Rabi frequency shown here is 1.65 MHz for a ⇡ pulse
time of 300 ns. These parameters are chosen to match the experiment in this dissertation.

The Doppler bandwidth of the sample is 4k�v. One factor of 2 comes from the two,
counter-propagating Raman beams and another factor of 2 helps describe the full width of
the distribution from ��v to +�v. At 140 µK, 7 amu, and 671-nm wavelength, our sample has
a Doppler width about 2⇡ ⇥ 2.4 MHz. The 300-ns ⇡ pulse has a Fourier-limited bandwidth
around 2⇡ ⇥ 3.3 MHz.

The work in [33] presents a more extreme application of this bandwidth criterion. A
87Rb sample at 39�C has a Doppler bandwidth of 2⇡⇥900 GHz. Pulses with a bandwidth
2⇡⇥3 MHz near ours carve out and select particular velocity classes on which to perform
an interferometer. Multiple velocity classes may be selected and interfered at one time since
the pulse bandwidth is so much finer than the sample’s Doppler bandwidth.

Ensemble dephasing

The thermal width of the ensemble sets the bandwidth criterion above. Nevertheless, each
atom has a particular velocity from the Maxwell-Boltzmann distribution along the Raman
beam axis. Each atom therefore sees di↵erent Doppler shifts on the Raman beams and
a di↵erent � = 2kv. That means each atom undergoes Rabi oscillations at a di↵erent
generalized Rabi frequency.16

hPbi =
1

�v

p
2⇡

Z 1

�1
exp(�v

2
/2�2

v)
⌦̌2

⌦̌2 + 4k2v2
sin2

⇣p
⌦̌2 + 4k2v2⌧/2

⌘
dv. (2.115)

Fig. 2.9 shows the response of an ensemble. The Rabi oscillations decohere compared to
Fig. 2.4 and fail to reach a pulse transfer e�ciency of 1. This dephasing is inevitable for
thermal samples.

16The intensity profile of the Raman beams also introduces an additional inhomogeneity into the gener-
alized Rabi frequency of the sample, but we do not consider that here. To consider that, one would need
to multiply the Rabi frequency by a spatially-dependent term like term exp(�2z2/w2) that accounts for the
intensity profile and integrate over the spatially-dependent density profile of the sample. This treatment also
neglects the Stark shifts. Those add another e�ciency-reducing factor in the recoil-sensitive portion of this
dissertation, because that project requires tuning away from the Stark-shifted Raman resonance condition.
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Figure 2.10: Three-level tune out. At some wavelength between the transitions called the
tune-out wavelength, the Stark shifts contributed by each transition are equal and opposite,
producing a vanishing ground-state polarizability and no AC Stark shift overall.

2.3.2 The tune-out wavelength: polarizability, dipole oscillations,
and hyperpolarizability

To understand and predict the tune-out wavelength, we need to modify some details of
the system we treated above. In the Raman transition, two ground state levels are each
connected to a single excited state via an electric dipole transition. Now consider a single
ground state |ai connected to each of two di↵erent excited states |e1i and |e2i with Rabi
frequencies (singe-photon detunings) ⌦1 and ⌦2 (� and ���FS), respectively. In a rotating
frame and neglecting the laser phases, the evolution follows
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where �FS (read fine structure) is the splitting between the two excited levels.

Polarizability and the tune-out wavelength

The ground state in the three-level system of Fig. 2.10 receives an AC Stark shift from
each of the two transitions coupled. Consider light tuned between the two transitions. The
light is detuned blue of the |ai ! |e1i transition, so that transition contributes a positive
AC Stark shift to |ai. The detuning is red of the |ai ! |e2i transition, so it contributes a
negative AC Stark shift to |ai. At some drive frequency between the two transitions, the
AC Stark shifts are equal and opposite. That is called a tune-out wavelength.

Suppose each transition has its own saturation intensity Isat,1 and Isat,2 and linewidth.
If we reference the detuning of the light to the |ai ! |e1i transition �e1 = �, then the
detuning from the |ai ! |e2i transition is �e2 = ���FS. The total AC Stark shift of the
ground state from a light field with intensity I comes from the term proportional to I in the
lowest eigenvalue of the Hamiltonian in Eq. (2.116),
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Written as a polarizability,
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In terms of saturation intensities and linewidths,
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~
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(���FS)Isat,2

◆
I. (2.119)

Generally, the polarizability of a state is just the sum over the polarizabilities contributed
by each of its couplings and their dipole matrix elements. Any modifications to the dipole
matrix element, like Clebsch-Gordan coe�cients, enter as multipliers on the matrix elements
in the sum above.

Tune out occurs when the total shift (or polarizability) is 0, at �TO. If we assume that
the linewidths are the same (true to 30 ppm in 7Li),

�TO =
�FS

1 + Isat,1/Isat,2
=

�FS

1 + d
2

a,e2/d
2

a,e1

. (2.120)

The tune-out wavelength depends on the relative strength of the two transitions, but it
does not depend on the intensity of the AC Stark-shifting light. This independence of the
tune-out wavelength on the light intensity is one factor that makes it a good candidate for
precision measurements, since intensity is very di�cult to calibrate in situ.

Dipole oscillations

Let us ask how the atomic dipole responds to the field when there are two transitions in-
volved. The polarizability treatment above justifies treating each of the two-level systems
independently and summing their results. The field drives drives oscillations on each tran-
sition at a frequency set by the detuning. We numerically integrate Eqs. (2.75), (2.76),
and (2.77) for each of the two two-level systems separately. Fig. 2.11 shows for a general
detuning that the superposed dipole oscillations have a nonzero average moment, a nonzero
AC Stark shift. At tune out, the dipole oscillates but the oscillations average to a value of
zero and the AC Stark shift vanishes. Even though the time-averaged dipole moment (and
energy shift) vanishes, that does not mean that the dipole moment vanishes at all times.

The fact that the dipole oscillates among nonzero values even at tune out has an impor-
tant consequence. The perturbed atomic wave function may have a nonzero overlap onto the
excited state wave function at any given time. That overlap allows for single-photon scat-
tering (consider the squared matrix element in Fermi’s Golden Rule, for example). While
the AC Stark shift vanishes at tune out, scattering does not.

The di↵erence between the coherent and incoherent response (AC Stark shift and scat-
tering, respectively) can be a subtle point. One might naively think that they could solve
for �2 from the polarizability in Eq. (2.86) and input that into the scattering rate in Eq.
(2.84). That would imply that the scattering rate is proportional to the polarizability and
that the scattering rate should vanish at tune out when the polarizability vanishes. That
implication is untrue, stemming from the fact that those results are derived for a two-level
system. Extending two-level system results to three levels clearly demands caution.
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Figure 2.11: Three-level dipole response. The in-phase component u of the atomic dipole
oscillates on short timescales and damps to a nonzero value at long timescales. Above: the
laser is detuned 2000 MHz (-8000 MHz) from a transition with 5.87-MHz linewidth and 7.62-
mW/cm2 (3.81-mW/cm2) saturation intensity in blue (red). Purple shows the sum of the
dipole responses. Below: the laser is detuned 3333 MHz (-6667 MHz) from a transition with
5.87-MHz linewidth and 7.62-mW/cm2 (3.81-mW/cm2) saturation intensity in blue (red).
Purple shows the sum of the dipole responses.
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Figure 2.12: Three-level hyperpolarizability interactions. Considering the hyperpolarizabil-
ity of independent two-level systems reproduces the first two four-photon interaction terms,
but fails to account for the cross terms. While two-level behavior describes the polarizability
and AC Stark shifts in a three-level model fairly well, treating the hyperpolarizability at
tune out requires a three-level model.

Hyperpolarizability and perturbation theory

Even in the two-level system, the AC Stark shift was not the full perturbation. The hyper-
polarizability quantifies a part of the response that the polarizability alone does not capture.
Before calculating the hyperpolarizability of a three-level system, we should first unravel a
critical feature of the hyperpolarizability from perturbation theory. It will illuminate why
the hyperpolarizability of two levels does not extend to three.

Quantum mechanical perturbation theory provides the full expression for the dipole en-
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ergy. It is the sum over perturbative corrections to all orders due to the perturbative inter-

action. Here, the perturbative interaction is the dipole interaction V̂ = � ~̂d · ~E (an approx-
imation itself). The first-order shift for level |ai in perturbation theory is ha|V̂ |ai ⌘ Va,a,
which we argued is 0 by a parity argument. In fact, all odd orders in perturbation theory
have a factor of Va,a, so all odd orders contribute no perturbative shift and we focus only on
the even orders.

The second-order correction involves the square of the interaction matrix element between
|ai and |ei, |Ve,a|2/(! � !e) = ha|d|eihe|d|aiE2

0
/~� = ~⌦2

/�, where we sum over excited
states. It is the AC Stark shift for each transition. The fourth-order correction involves
summing over interaction matrix elements through di↵erent intermediate states, as long as
the system starts and ends in the ground state. Consider three excited levels, the maximum
number that can be involved in a four-photon process, |e1i, |e2i, and |e3i labeled by k, m,
and n. The fourth-order shift is a sum over terms like [100]

Va,nVn,mVm,kVk,a

(! � !n)!m(! � !k)
(2.121)

and
V

2

a,k

(! � !k)

V
2

a,m

(! � !m)2
. (2.122)

Each matrix element represents a single-photon coupling and the order of perturbation
theory produces a term of the same order in E0. The salient point is that the order in
perturbation theory corresponds to the number of photons involved in the interaction. The
AC Stark shift is a two-photon interaction that describes a photon coupling from ground
state up to excited state, then back down. The hyperpolarizability involves four photons:
up, down, then up and down again; or up, further up, down some, and all the way down.
The two excited states involved in those couplings need not be the same. Of course, in
the two-level model, only one excited state exists. In the three-level system, there are two
excited levels and the excited state involved in each pair of the four-photon process can be
di↵erent.

While the two-level model can describe the two e↵ectively-two-level systems between
|ai $ |e1i and |ai $ |e2i, it cannot account for all the proper four-photon couplings.
The two-level model reproduces the coupling terms |ai ! |e1i ! |ai ! |e1i ! |ai and
|ai ! |e2i ! |ai ! |e2i ! |ai, but only the three-level model can produce the cross-terms
|ai ! |e1(e2)i ! |ai ! |e2(e1)i ! |ai.

That has an important physical consequence in the hyperpolarizability of a three-level
system. Adding the hyperpolarizabilities for the two two-level systems, |ai $ |e1i and
|ai $ |e2i, produces what would appear to be a very large hyperpolarizability even at tune
out. To compute the three-level model’s hyperpolarizability, we enlisted Mathematica to
solve for the eigenvalues of the Hamiltonian in Eq. (2.116) and extract the term / E

4

0
. The

three-level model’s hyperpolarizability crosses 0 at precisely the same laser frequency as the
polarizability and AC Stark shift.
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Figure 2.13: Polarizability and hyperpolarizability of a three-level system. All plots
are for a system with �FS = 2⇡ ⇥ 10 GHz, da,e1 = (

p
1/3)1.988 ⇥ 10�29 C·m, and

da,e2 = (
p
1/3)2.812 ⇥ 10�29 C·m. Each parameter is chosen to roughly match 7Li’s D-

line transitions. The factor of
p

1/3 reflects a Clebsch-Gordan coe�cient that mutes the full
dipole matrix element, chosen here to reflect our tune-out measurement. The electric field
that produces the polarizability and hyperpolarizability shifts on the right is chosen to match
the peak field in the tune-out measurement, with 4 mW of optical power and anamorphic
beam waists of 0.15 mm and 0.6 mm.

Fig. 2.13 shows the polarizability and hyperpolarizability of a three-level system. We
compute each in atomic units, as well as the energy shift each term contributes given specific
parameters of the light field relevant to our tune-out measurement. For a three-level system,
the hyperpolarizability clearly vanishes at the same wavelength as the tune-out wavelength
where the polarizability vanishes. That fact is important for measuring the tune-out wave-
length. If the hyperpolarizability was nonzero at tune out, then the total dipole energy where
the polarizability vanishes would have an intensity dependence because of the nonzero hy-
perpolarizability. In other words, the measured value of tune out would depend on intensity.
Of course, hyperpolarizability still exerts an important e↵ect away from tune out. A new
generation of atomic clocks, optical lattice clocks [101, 102], trap atoms in an optical lattice
to increase the possible interrogation time of the clock transition. Since there is no trapping
at a tune-out wavelength, the trap light cannot be tuned to a tune-out wavelength and the
hyperpolarizability must be nonzero. That introduces a perturbation on the clock transition
that needs to be understood [103, 104, 105, 106, 107, 108, 109, 110].
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2.4 Many levels

Atoms rarely o↵er clean, closed two-level or even three-level systems like those we have
treated above. There are many levels that deserve consideration. Alkali atoms like lithium
have electrons in closed, noble-gas-like cores that screen out the nuclear charge. With a
single valence electron beyond, alkalis look much like a hydrogen atom. Hydrogenic states
|nLmLi, with principal quantum number n, orbital angular momentum quantum number L
and magnetic quantum number m, describe the alkali valence states well to a first approx-
imation. The nuclear potential is a little di↵erent due to the increased nuclear charge and
electrons in the close core shells. Even still, coupling between the magnetic field generated
by the orbital motion of the valence electron and its own magnetic spin split the |nLmLi
states into fine-structure states |nLJmJi. Interaction with the small nuclear magnetic mo-
ment further splits the fine structure into a hyperfine structure |nLJ ;F,mF i. In this section,
we will extend two- and three-level system results to atomic systems with many hyperfine
levels.

2.4.1 Clebsch-Gordan coe�cients and coupling strengths

The presence of hyperfine and Zeeman sublevel splittings produces a menagerie of allowed
transitions that a↵ect coupling rates. To derive the details, it is customary to work in
a spherical tensor basis with a basis vector index q that describes the polarization of the
coupling. Any vector is a linear combination of three-dimensional basis vectors, for example
the dipole moment is ~d = d�1ê�1+ d0ê0+ d1ê1. A “⇡” transition corresponds to q = 0, while
(perhaps counterintuitively) q = ⌥1 describes a “�±” transition from mF to m

0
F with

m
0
F + q = mF . (2.123)

The basis vectors in the spherical tensor basis are linear combinations of Cartesian basis
vectors.

ê�1 = �̂
+ =

1p
2
(x̂� iŷ) , (2.124)

ê0 = ⇡̂ = ẑ, (2.125)

ê1 = �̂
� = � 1p

2
(x̂+ iŷ) . (2.126)

The Rabi frequencies, AC Stark shifts, etc. all depend on the electric dipole coupling
strength from the initial state |nLJ , F,mF i to a state in question |n0

L
0
J 0 , F

0
,m

0
F i. That

matrix element is determined in part by geometry and can be written as [111]

hF,mF |dq|F 0
,m

0
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◆
, (2.127)
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with the term in () being a Wigner 3-j symbol. The hyperfine reduced dipole matrix element
may be written in terms of a fine-structure reduced dipole matrix element.

hF ||~d||F 0i = hJ ||~d||J 0i(�1)F
0
+J+1+In

p
(2F 0 + 1)(2J + 1)

⇢
J J

0 1
F

0
F In

�
, (2.128)

with the term in { } being a Wigner 6-j symbol and In being the nuclear spin.
Taken together, we can write all the factors of Eqs. (2.127) and (2.128) in a coe�cient

C that depends on the initial J, F,mF , final J 0
, F

0
,m

0
F , and the polarization label q.
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The coupling strength becomes

hF,mF |dq|F 0
,m

0
F i = C(JFmF ; J

0
F

0
m

0
F ; q)hJ ||~d||J 0i ⌘ C(JFmF ; J

0
F

0
m

0
F ; q)dJ,J 0 . (2.130)

The coe�cient C is the Clebsch-Gordan coe�cient. 7Li has the same structure as 87Rb and
shares its Clebsch-Gordan coe�cients, so Ref. [111] is a sage lab partner.

Eq. (2.130) illustrates how a Clebsch-Gordan coe�cient modifies the coupling strength
of a hyperfine transition with respect to the overarching fine-structure transition strength.
It is convenient in cold atomic physics because transition strengths are usually quoted in
terms of the fine-structure reduced dipole matrix element dJJ 0 . Consider the Rabi frequency
for a hyperfine transition |na(La)Ja ;F,mF i ! |nb(Lb)J 0

b
;F 0

,m
0
F i.

⌦ab = �1

~hnb(Lb)J 0
b
;F 0

b,m
0
F,b| ~̂d · ~E|na(La)Ja ;Fa,mF,ai. (2.131)

We perform the dot product in the spherical tensor basis wherein ✏q represent the electric
field polarization components.

~E = E0

X

q

✏qêq = E0 (✏�1ê�1 + ✏0ê0 + ✏1ê1) . (2.132)

Using the spherical tensor basis admits Clebsch-Gordan coe�cients and describe the polar-
ization with spherical tensor components represented by ✏.

⌦ab = �E0

~
X

q

✏qhb|d̂q|ai = �E0

~
X

q

✏qC(JFmF ; J
0
F

0
m

0
F ; q)dJ,J 0 (2.133)

We may view the Clebsch-Gordan coe�cient as modifying the reduced dipole matrix
element for the transition. In other words, its square modifies the ratio �2ab/Isat,ab / d

2

J,J 0 .
The Rabi frequency for a single polarization component may be described in terms of the
fine-structure transition’s dipole matrix element and a Clebsch-Gordan coe�cient, analogous
to Eq. (2.80).

⌦ab,q = ��abp
2
(✏qC(JFmF ; J

0
F

0
m

0
F ; q))

s
I

Isat,ab
. (2.134)
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2.4.2 Raman Rabi frequency and Clebsch-Gordan interference

The presence of many levels modifies the Raman Rabi frequency we previously calculated for
the three-level model in a profound way. The two-photon Rabi frequency from Eq. (2.108)
involves products of two single-photon (i.e. two-level) Rabi frequencies; that is, it involves
products of di↵erent Clebsch-Gordan coe�cients. This is an important distinction from
single-photon transitions where single Clebsch-Gordan coe�cients are always squared and
lose their sign. Here, it will produce interference e↵ects in Raman Rabi frequencies.

To calculate the Raman Rabi frequency for a single state transitioning to a particular final
state, we treat the processes for each polarization as advancing in parallel and add the rates
[112]. The label a denotes the initial state |na(La)Ja ;FamF,ai, the label b denotes the inter-
mediate excited state |nb(Lb)J 0

b
;F 0

bm
0
F,bi, the label c denotes the final state |nc(Lc)Jc ;F

00
c m

00
F,ci,

q denotes the polarization for the first ab transition, and q
0 denotes the polarization for the

second bc transition.

⌦̌ac =
X

qq0,F 0m0
F ,F 00m00

F

⌦ab,q⌦bc,q0

2�ab
(2.135)

=
X

qq0,F 0m0
F ,F 00m00

F

�ab�bcI

4�ab

p
Isat,abIsat,bc

✏ab,q✏bc,q0C(JFmF ; J
0
F

0
m

0
F ; q)C(J 00

F
00
m

00
F ; J

0
F

0
m

0
F ; q

0).

(2.136)

We will now consider two polarizations addressing the |2S1/2, F = 2,mF = 0i state of
the 7Li atom with an unresolved 2P3/2 state and hyperfine structure. We assume that the
single-photon detuning is many linewidths, so di↵erences in single-photon detuning between
di↵erent intermediate |2P3/2, F

0
m

0
F i are negligible.

First consider each of the Raman beams having polarization along x̂ = (�̂+ � �̂
�)/

p
2,

so that the polarization components for each are ✏±1 = ⌥1/
p
2. The ✏ab,q✏bc,q0 products in

the sum are 1, except for when q = 0 or q0 = 0, in which case the product is 0 and the term
does not contribute. There are four Raman routes with nonzero Rabi frequency that add to
the total two-photon Rabi frequency:

(i) the atom absorbs a �+ photon from |2S1/2, F = 2,mF = 0i to |2P3/2, F
0 = 2,m0

F = 1i
and emits a �+ photon to |2S1/2, F 00 = 1,m00

F = 0i,

(ii) absorbs �+ to |2P3/2, F
0 = 1,m0

F = 1i and emits �+ to |2S1/2, F
00 = 1,m00

F = 0i,

(iii) absorbs �� to |2P3/2, F
0 = 2,m0

F = �1i and emits �� to |2S1/2, F
00 = 1,m00

F = 0i, and

(iv) absorbs �� to |2P3/2, F
0 = 1,m0

F = �1i and emits �� to |2S1/2, F
00 = 1,m00

F = 0i.

The products of Clebsch-Gordan coe�cients for these routes are
p
1/8

⇣p
1/8
⌘
,

p
1/120

⇣p
5/24

⌘
, �
p

1/8
⇣p

1/8
⌘
, and

p
1/120

⇣
�
p
5/24

⌘
, respectively. Each term has
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an equal and opposite partner and the polarization component products all have the same
sign, so the sum over these terms is 0. Raman beams with parallel linear polarization do
not drive a Raman transition because of destructive interference between di↵erent Raman
routes.

Now, consider the Raman beams having orthogonal linear polarization, one with x̂ =
(�̂+� �̂

�)/
p
2 and the other with �ŷ = (�̂++ �̂�)/

p
2. We refer to this polarization scheme

as “lin-?-lin”. The ✏q✏q0 products are 1 for q = q
0 = �1 (terms (i) and (ii) above), but

-1 for q = q
0 = +1 (terms (iii) and (iv) above). These factors reverse the opposing signs

in the Clebsch-Gordan products, so now the total rates add. To drive Raman transitions
|2S1/2, F = 2,mF = 0i ! |2S1/2, F

00 = 2,m00
F = 0i, we therefore use lin-?-lin polarization to

accommodate interference between Clebsch-Gordan coe�cients.

2.4.3 Total polarizability

Calculating the total AC Stark shift for a level |F,mF i also changes in the presence of many
levels. Simpler than the Raman Rabi frequency calculation above, (viewed in one way)
it just requires modifying the saturation intensities according to the light polarization and
Clebsch-Gordan coe�cients then summing over all transitions to hyperfine state |F 0

,m
0
F i

via transition |n(La)Jai ! |n0(L0
b)J 0

b
i.

�UAC =
~I
4

X

q,nJn0J 0,F 0m0
F

✏
2

qC
2(JFmF ; J 0

F
0
m

0
F ; q)�

2

nJn0J 0

�nJn0J 0,FmF ,F 0m0
F
Isat,nJn0J 0

, (2.137)

where we use the saturation intensity as opposed to an e↵ective saturation intensity. The
polarizability in this case is

↵ = �c"0~
8

X

q,nJn0J 0,F 0m0
F

�
2

nJn0J 0

�nJn0J 0,FmF ,F 0m0
F
Isat,nJn0J 0

✏
2

qC
2(JFmF ; J

0
F

0
m

0
F ; q). (2.138)

The atomic polarizability evidently depends beyond the detuning on the polarization of the
coupling light and the hyperfine state and structure.

Experimentalists tend to be comfortable referencing tables of Clebsch-Gordan coe�cients
or computing them for use in the equations above. Theorists tend to find the dependence on
experimental vagaries like light polarization and atomic spin polarization perturbing. They
prefer to decompose the polarizability in the spherical tensor basis to terms of increasing
tensor rank. In the hyperfine basis [15, 29],

↵ = ↵
s + ✏C

mF

2F
↵
v � ✏D

3m2

F � F (F + 1)

2F (2F + 1)
↵
T
, (2.139)

where the factors ✏C = |✏�1|2 � |✏1|2 and ✏D = 1� 3|✏0|2 depend on polarization. The scalar
(↵s), vector (↵v), and tensor (↵T ) contributions to the total polarizability are written in
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terms of a tensor-rank-dependent term

↵
s =

1p
3(2F + 1)

↵
(0)
, (2.140)

↵
v = �

s
2F

(F + 1)(2F + 1)
↵
(1)
, (2.141)

↵
T = �

s
2F (2F � 1)

3(F + 1)(2F + 1)(2F + 3)
↵
(2)
, (2.142)

described by

↵
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~(�1)K+F+1(2F + 1)
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� i�nJn0J 0/2
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! + !nJn0J 0,FmF ,F 0m0
F
+ i�nJn0J 0/2

◆
.

(2.143)

Note that deriving this tensor description of the polarizability does not assume the RWA,
while the Clebsch-Gordan approach in Eq. (2.138) does have the RWA built in by our
treatment of two-level systems.

The two approaches to describing the polarizability are equivalent up to the RWA17,
so whichever provides the most convenience in each application may be preferred. If one
wishes to account for Zeeman shifts, they would enter the detuning �FmF ,F 0m0

F
[28]. The

theorists’ approach does have the advantage of separating terms in a hierarchy of magnitudes.
At most frequencies, the scalar polarizability dominates and the vector and tensor terms
may be neglected. The scalar polarizability is often su�cient for computing dipole trap
potentials tuned far from any resonance, for example. A precision measurement of the tune-
out wavelength, however, certainly requires accounting for all the terms.

2.4.4 Total scattering

Eq. (2.84) describes the single-photon scattering rate for a two-level system, which extends
very simply to many levels. It contains a squared single-photon Rabi frequency and a
squared detuning. In calculating the Raman Rabi rate, products of di↵erent Clebsch-Gordan
coe�cients permitted the entrance of di↵erent signs in a sum and allowed for interference
and cancellation. In calculating the total polarizability and AC Stark shift above, a sign may

17Interested readers could return to the two-level system and skip the RWA in order to derive a more
exact expression for two-level systems’ polarizability.
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enter the detuning and di↵erent Stark shifts may cancel. The scattering rate only involves
squared Rabi frequencies and squared detunings, so every term is always positive. Scattering
rates always add. The total single-photon scattering rate is just the sum over the scattering
rates contributed by each two-level transition in the many-level system.

rsc =
X

q,n0J 0F 0m0
F

�nJn0J 0

2

⌦2

q,nJFmF ,n0J 0F 0m0
F
/2

�2

q,nJFmF ,n0J 0F 0m0
F
+ ⌦2

q,nJFmF ,n0J 0F 0m0
F
/2 + �

2

nJn0J 0/4
. (2.144)

Written in this way, the Clebsch-Gordan coe�cients and polarization components enter the
Rabi frequencies, but not the linewidth that appears here as a fine-structure decay rate.

2.5 The 7Li atom

What follows below is an introduction to the peculiarities of the 7Li atom. This section may
be considered more germane to the experimental sphere of tools in the next chapter, but
consider it an interlude on the way to a description of the experiment.

2.5.1 D-line transitions

Alkali experimentalists often refer to the |2S1/2i ! |2P1/2i and |2S1/2i ! |2P3/2i transitions
as the D1 and D2 lines, respectively (for historical reasons). Knowing the transition energies
and strengths helps in controlling dynamics on the transitions. Fig. 2.14 shows the lowest
3 electronic energy levels of the 7Li atom. Higher transitions to the 3S and 3P levels can
also be useful in cooling and tune-out measurements [113, 114], but we do not consider them
here.

The transition strengths determine the Rabi frequency for a given light intensity. The
transition strength may be parameterized in a number of ways: the oscillator strength, the
transition dipole matrix element, the saturation intensity, the line width. They are all related
[90]. The tune-out measurement presented in this dissertation is primarily a measurement
of the relative D-line transition strengths, so it is worth some e↵ort to understand their
practical application.

A two-level system with levels |ai and |bi decays at a rate set by the dipole matrix element
dab

18

�ba =
!
3

abd
2

ab

3⇡"0~c3
. (2.145)

The 7Li atom is clearly not a two-level system. In principle, the total decay rate is a weighted
sum over two-level decay rates for each pair of connected levels. The Wigner-Eckart theorem

18The Wigner-Weiskopf derivation of this decay rate is a slick and incredibly illuminating application
of quantum mechanics, a must-do for atomic physics students. It assumes that the vacuum modes of the
electromagnetic field stimulate emission at a Rabi rate set by the vacuum coupling. Rich results spring
forth, including the modification of decay rates in cavities or near surfaces where the mode structure of the
electromagnetic field changes in response to the boundary conditions.
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U

mF

803.504 MHz

91.88(1) MHz

18.03(3) MHz
2P3/2
(D2)

2P1/2
(D1)

2S1/2

10 011.99(3) MHz

446 809 884.450(3) MHz446 799 862.994(2) MHz

9.46(3) MHz
5.81(3) MHz
2.76(3) MHz

Figure 2.14: 7Li energy levels and transitions. The Zeeman shifts are shown for a positive field
and are drawn to scale according to gF . The splittings between hyperfine levels are not drawn
to scale. Experimental transition energies and splittings for |2S1/2, F = 2i ! |2P1/2, F

0 = 2i
and |2S1/2, F = 2i ! |2P3/2, F

0 = 2i are from Ref. [115]. The experimental ground state
hyperfine splitting of 803.504 MHz is from Ref. [116]. All frequencies here are given as cycles
per time, as opposed to angular frequencies that are in radians per time.

can be used to simplify the sum for an unpolarized sample to a simple degeneracy factor of
the upper and lower levels with Ju and Jl, respectively,

X

q,F

|hF,m0
F + q|dq|F 0

,m
0
F i|2 =

2Ju + 1

2Jl + 1
|hJl||d||Jui|2. (2.146)

In this case, the decay rate is related to the reduced dipole matrix element by

�ul =
!
3

ul

3⇡"0~c3

✓
2Jl + 1

2Ju + 1

◆
|hJl||d||Jui|2. (2.147)

The reduced dipole matrix elements are therefore

|hJl||d||Jui|2 = d
2

ul =
3~"0c3
8⇡2f

3

ul

2Ju + 1

2Jl + 1
�ul, (2.148)

where ful = !ul/2⇡ is the transition frequency. Clebsch-Gordan coe�cients are frequently
defined as multipliers of this reduced dipole matrix element [111].
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Tread lightly and remain highly vigilant. Theorists tend to absorb a factor of
p
2Jl + 1

into |hJl||d||Jui| [12, 16, 117]. Experimentalists tend not to absorb this factor [111, 90]. We
adopt the latter convention for the purposes of this section, but we use the former convention
when calculating the full polarizability using Eq. (2.143) in Sec. 5.7.1.

The 7Li D-line transitions have linewidths

�D2 = 2⇡ ⇥ 5.8714 MHz, (2.149)

�D1 = 2⇡ ⇥ 5.8712 MHz, (2.150)

that are very nearly equal due to the similarity in the transition frequencies. The lifetime
measurements presented in [96] were not even able to distinguish the small di↵erence in
lifetimes between |2P1/2i and |2P3/2i, arriving at 1/� = 27.102(7) ns for both. The reduced
dipole matrix elements are [12]19

dD2 = 2.812⇥ 10�29 C ·m, (2.151)

dD1 = 1.988⇥ 10�29 C ·m. (2.152)

Note that atomic units for dipole moments are related to SI via

1 a.u. = 8.4783536⇥ 10�30 C ·m. (2.153)

In this work, we tend to use spin-polarized atomic samples. The sum over spins in Eq.
(2.146) that leads to the degeneracy simplification is no longer particularly helpful. The
saturation intensities most convenient for spin-polarized samples are those that specify to a
particular hyperfine transition. “The” saturation intensity, is [90]

Isat,ab =
c"0�

2

ab~2
4d2ab

. (2.154)

This definition bears the full strength of the dipole transition. For a spin-polarized sample,
however, the transition is suppressed by the Clebsch-Gordan coe�cient. By the definition
above, the D1 and D2 lines have saturation intensities of

Isat,D1 = 2.54 mW/cm2 (2.155)

Isat,D2 = 1.27 mW/cm2 (2.156)

The weaker D1 transition has a saturation intensity twice that of the D2 line because it has
half the number of states.

The convenience of the relation ⌦ = �

p
I/2Isat may be preserved by building into the

saturation intensity the coupling strength as modified by Clebsch-Gordan coe�cients. These
e↵ective saturation intensities I⇤sat depend on the initial state and the polarization of the light.

19Reminder: here we have removed the factor of
p
2Jl + 1 embedded in the dipole moments reported in

that reference.
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For the stretched-state MOT cooling transition |2S1/2, F = 2,mF = 2i ! |2P3/2, F
0 =

3,m0
F = 3i, the Clebsch-Gordan coe�cient is

p
1/2. That suppression factor must multiply

the dipole matrix element, so the e↵ective saturation intensity for that transition is twice as
large.

I
⇤
sat,D2,22!33

= 2.54 mW/cm2
. (2.157)

In this work, we drive Stimulated Raman transitions from |2S1/2, F = 2,mF = 0i to
|2S1/2, F = 1,m0

F = 0i through the |2P3/2, F
0 = 1,m0

F = ±1i and |2P3/2, F
0 = 2,m0

F =
±1i states. Consider the route |2S1/2, F = 2,mF = 0i ! |2P3/2, F

0 = 1,mF = 1i !
|2S1/2, F = 1,mF = 0i, which involves stimulated absorption of a �+ photon from F = 2
and stimulated emission of a �+ photon from F = 1. The rate contributed by this route
involves the product of those Clebsch-Gordan coe�cients, weighted by the light amplitude
in that polarization, which is ±1/

p
2 for our lin-?-lin polarization scheme that reverses some

otherwise destructively interfering signs from the Clebsch-Gordan coe�cients. The sum over
routes yields a summed product of Clebsch-Gordan coe�cients of 1/6, so the saturation
intensity relevant to our Raman transitions is six times larger than the 1.27 mW/cm2 figure.

I
⇤
sat,Raman

= 7.62 mW/cm2
. (2.158)

Using this saturation intensity to calculate the two-photon Rabi frequency for for this work’s
30-mW and 15-mW beams with 2.1-mm 1/e2 gaussian intensity waist, we arrive at a pre-
dicted ⇡/2 pulse time of 150 ns for peak intensity. We use a 160 ns pulse time, slightly longer
likely due to the intensity profile.

We use the D1 line to optically pump the sample to the |2S1/2, F = 2,mF = 0i. Optically
pumping on the ⇡-polarized transition involves di↵erent saturation intensities for each initial
state, 7.62 (30.48) mW/cm2 for the mF = ±2 (±1) states. Of course, the ⇡ transition for
mF = 0 is forbidden so its saturation intensity is infinite. Note, however, that o↵-resonant
excitations to |2P1/2, F = 1,mF = 0i limit the steady state pumping e�ciency.

The tune-out measurement couples |2S1/2, F = 2,mF = 0i to both |2P1/2i and |2P3/2i
with �± polarization. The sum over squared Clebsch-Gordan coe�cients to |2P3/2i gives 1/3,
as does the sum for |2P1/2i. The e↵ective saturation intensities for the tune-out measurement
are then

I
⇤
sat,D2,TO = 3.81 mW/cm2

. (2.159)

I
⇤
sat,D1,TO = 7.62 mW/cm2

. (2.160)

These would be the saturation intensities relevant to Eq. (2.120), neglecting any hyperfine
structure.

2.5.2 Mass and recoil

The 7Li mass is not exactly the sum of the masses of its 3 protons, 4 neutrons, and 3
electrons, which matters for the magnitude of its photon recoil. The binding energy of the
atom reduces the mass by 0.6%. The oscillation frequency of atomic ions in Penning traps
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State F J L S gF

2P3/2 0 3/2 1 1/2 2/3
2P3/2 1 3/2 1 1/2 2/3
2P3/2 2 3/2 1 1/2 2/3
2P3/2 3 3/2 1 1/2 2/3
2P1/2 2 1/2 1 1/2 1/6
2P1/2 1 1/2 1 1/2 -1/6
2S1/2 2 1/2 0 1/2 1/2
2S1/2 1 1/2 0 1/2 -1/2

Table 2.1: 7Li g factors. 7Li has a nuclear spin In = 3/2.

produce fantastically precise measurements of atomic masses [118]. 7Li’s mass is mLi =
7.0160034256(45) amu [119].

The momentum of a photon with wave number k kicks an atom, inducing a recoil speed

vr =
~k
m

. (2.161)

For a photon tuned to theD2 line, that recoil speed is vr = 8.476552 cm/s. The formula above
falls out readily from applying conservation of momentum. We may also use conservation of
energy and assign an energy ~!r to the kinetic energy mv

2

r/2,

!r =
~k2

2m
. (2.162)

Again, for a photon tuned to the D2 line, that recoil frequency is !r = 2⇡ ⇥ 63.16715 kHz.

2.5.3 Zeeman shifts

We place lithium atoms into magnetic fields for trapping and state manipulation. Here, we
compute the level shifts due to magnetic fields.

Linear Zeeman shift

The linear Zeeman shift dominates at the low field strengths used in this experiment. The
energy shift of a level in a magnetic field Bb is governed by the g factor of the state and the
mF quantum number.

�U = µBgFmFBb, (2.163)

where µB is the Bohr mangeton. Tab. 2.1 tabulates the hyperfine g factors for the lowest
three 7Li electronic states. The g factors are [111]

gF ⇡ gJ
F (F + 1)� In(In + 1) + J(J + 1)

2F (F + 1)
, (2.164)



CHAPTER 2. THEORETICAL TOOLS 48

with

gJ ⇡ 1 +
J(J + 1) + S(S + 1)� L(L+ 1)

2J(J + 1)
. (2.165)

In the 2S1/2 ground state, gF = ±1/2. Eq. (2.163) gives a linear Zeeman shift in the 7Li
ground state of ✓

�f

�B

◆
= 0.7 MHz/G. (2.166)

Quadratic Zeeman shift

The ground-state hyperfine splitting is 803.504 MHz. Fig. 3.27 shows microwave transitions
between the 2S1/2, F = 1 and 2 levels. The linear Zeeman shifts suggest a field strength
of 1.3 G. The mF = 0 ! m

0
F = 0 transition with no linear Zeeman shift is shifted by 8.5

kHz to 803.5125 MHz. The two mF = 0 levels shift in opposite directions, so the quadratic
Zeeman shift is half the size of the shift on the transition.

✓
�f

(�B)2

◆
⇡ 2.5 kHz/G2

. (2.167)

2.5.4 Clebsch-Gordan coe�cients

We saw above how the Clebsch-Gordan coe�cients are critical for predicting the dynamics
and coupling rates generated by laser fields. They depend on 7Li’s quantum numbers, like
its nuclear spin of In = 3/2 and angular momentum structure identical to 87Rb. Its Clebsch-
Gordan coe�cients are therefore identical to those of 87Rb, which can be found tabulated in
[111].

2.5.5 Unresolved D2 line

Di↵erent from most alkali atoms, 7Li’s D2 is unresolved, creating some headaches in handling
the atoms. The four levels of the D2 line are all within 18 MHz of each other, insignificant
compared to the 6-MHz linewidth. Addressing any specific hyperfine transition on the D2

line becomes essentially impossible as other sublevel transitions will not have significantly
di↵erent detunings and any polarization impurity can drive to the wrong Zeeman sublevel.

The lack of a closed cycling transition brings to the fore an array of complications, in-
cluding ine�cient cooling and detection. Detecting an an atom in a particular hyperfine
ground state would benefit from a cycling transition that scatters a bunch of signal photons.
Because of the unavoidability of unintended transitions, atoms may excite to unintended
states and decay to unintended dark states to never provide another signal photon. Simple
Monte-Carlo simulations based on excitation and decay Clebsch-Gordan coe�cients sug-
gest that our atoms scatter merely ⇠2 D2 photons from |2S1/2, F = 2i before decaying to
|2S1/2, F = 2i and going dark. This number proved handy in estimating signal strengths at
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Parameter Value Reference

!, |2S1/2, F = 2i ! |2P1/2, F
0 = 2i 2⇡ ⇥ 446.799862.994(2) [115]

!, |2S1/2, F = 2i ! |2P3/2, F
0 = 2i 2⇡ ⇥ 446.809884.450(3) [115]

|2S1/2i hyperfine splitting 2⇡⇥803.5040866(10) MHz [116]
dD1 1.988⇥ 10�29 C·m
dD2 2.812⇥ 10�29 C·m
Isat,D1 2.54 mW/cm2

Isat,D2 1.27 mW/cm2

�D1 2⇡⇥5.8714 MHz
�D2 2⇡⇥5.8712 MHz
TD 140 µK
|2S1/2i ! |3P1/2i wavelength 323.3576 nm
|2S1/2i ! |3P3/2i wavelength 323.3566 nm
�3P!2S 2⇡ ⇥ 0.1595 MHz [120]
�3P!3S 2⇡ ⇥ 0.595 MHz
�3P 2⇡ ⇥ 0.754 MHz
d2S1/2!3P1/2 0.110⇥ 10�29 C·m
d2S1/2!3P3/2 0.156⇥ 10�29 C·m
Isat,2S1/2!3P1/2 0.613 mW/cm2

Isat,2S1/2!3P3/2 0.305 mW/cm2

Nuclear spin In 3/2
Mass mLi 7.0160034256(45) amu [119]
Recoil velocity vr at 671 nm 8.4761 cm/s
Recoil frequency !r at 671 nm 2⇡ ⇥ 63.160 kHz
Linear Zeeman shift 2⇡⇥700 kHz/G (for gF = 1/2)
Quadratic Zeeman shift 2⇡⇥2.5 kHz/G2 (for gF = 1/2) Fig. 3.27
Li core (Li+) polarizability ↵c 0.1883(20) a.u.=1.596(17)⇥10�30 C·m [16]

Table 2.2: 7Li at a glance. Note that the dipole matrix elements reported here have not
absorbed the factor of

p
2Jl + 1.

some times during the course of this experiment. It is also relevant for how much repump
power is required in the magneto-optical trap, about half that of the cooling light.

2.5.6 The Hylleraas basis

The lithium atom is relatively simple system in theory, with just three electrons and a
nucleus. The parameters above should be calculable from theory, however, the complexity
underlying those calculations is belied by even lithium’s apparent simplicity.

The dynamic interactions between each of the particles make ab initio atomic structure
calculations challenging in general. The (non-relativistic) Hamiltonian for three-electron Li
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in the center-of mass frame, for example, is [18]
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. (2.168)

where qn is the nuclear charge, qi is the charge for electron i, ri is the distance of electron i to
the nucleus, rij is the distance between electron i and electron j, and µ = mnme/(mn +me)
is the reduced mass for nuclear mass mn and electron mass me.

States of the atom solve  0 the Schrödinger equation

Ĥ0 0(~r1,~r2,~r3) = E0 0(~r1,~r2,~r3). (2.169)

The Hylleraas functions serve as the basis functions for the state:

�(~r1,~r2,~r3) = r
j1
1
r
j2
2
r
j3
3
r
j12
12

r
j23
23

r
j31
31

exp (�↵0
r1 � �

0
r2 � �

0
r3)YLML

(l1l2)l12,l3
(r̂1, r̂2, r̂3)�(1, 2, 3),

(2.170)
where a vector-coupled product of spherical harmonics Yli,mi(r̂i) forms YLML

(l1l2)l12,l3
with to-

tal angular momentum L and projection ML and �(1, 2, 3) is the three-electron spin-1/2
function. The Hylleraas method is variational, optimizing the parameters to minimize the
state energy. It can be applied to calculating polarizability, hyperpolarizability, long-range
interatomic interaction coe�cients, etc. [18].

The intention for displaying these equations is not to instruct in their usage, but rather
to illustrate that simple hydrogenic wave functions underlie the Hylleraas method. Theorists
can explicitly account for correlations in atomic electron dynamics by applying a variational
approach to Hylleraas basis states. The Hylleraas approach is therefore expected to provide
the most accurate computational results, but lithium and its numerous three electrons repre-
sent the final frontier for the method [12]. Hylleraas calculations [17, 21, 20, 121, 19, 14, 122]
serve as a benchmark for other methods [12, 11, 13]. Validating the other methods against
Hylleraas calculations in lithium helps to fortify confidence in applying those methods to
heavier atoms.

2.6 Atom interferometers

Now that we know how to manipulate and describe the response of simple atomic systems,
we turn to the behavior of atom interferometers. The theoretical machinery this section
develops will aid in describing the signals of interferometers and their strength.

All interferometers separate waves along multiple paths. Upon recombination, di↵erences
in phase the waves accrue along each path translate into population di↵erences at the output
ports. Light interferometers separate light waves. Atom interferometers separate matter
waves in the form of atoms.

There is an important distinction between light interferometers and atom interferometers.
Photons are allowed to overlap and interfere with each other. Atoms, on the other hand,
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su↵er collisional interactions with each other, a consequence of their electrically charged
constituents. So di↵erent atoms cannot be made to interfere with each other. Instead, an
atom must interfere with itself.20 A single atom must itself explore multiple paths that find
their way back to one another so that they may interfere. This is the case at least for thermal
distributions of atoms, though the notion of di↵erent atoms interfering with each other may
be more applicable to Bose-Einstein condensates.21

In this work, we use light-pulse atom interferometry [59]. Pulses of light manipulate the
matter-wave trajectories along one spatial dimension. The trajectories evolve in position
as a function of time, generating distinct spacetime trajectories. Here, we investigate how
beam splitters and mirrors manipulate the matter waves into producing interference terms.
We start by looking at the simplest Ramsey interferometer, then we will look at simplified
Mach-Zehnder and Ramsey-Bordé interferometers to establish a framework for computing
interferometer output populations and contrasts. Only after will we dig more deeply into
precisely how to calculate the interferometers’ phases.

2.6.1 Simplified Ramsey interferometer

We begin to establish a framework for treating interferometers by considering the simplest
interferometer, the Ramsey interferometer. It consists of a beam splitter, some free-evolution
time, and another beam splitter. The first beam splitter Ŝ splits an initial state

| (0)i =
✓
ca(0)
cb(0)

◆
=

✓
1
0

◆
(2.171)

into an equal superposition

Ŝ(�L1)| (0)i =
1p
2

✓
1

�ie
i�L1

◆
, (2.172)

where �L1 is the phase of the laser at this first pulse and we have neglected pulse ine�ciencies
like detuning. We allow the superposition to freely evolve for some time T . Assuming the
atomic states are eigenstates of the Hamiltonian that describes this time evolution, |ai and
|bi pick up phases e�i!a,bT and we set !a = 0.

Û(T )Ŝ| (0)i = 1p
2

✓
1

�ie
i(�L1�!bT )

◆
. (2.173)

After the free evolution, we apply another beam splitter to recombine the arms.

Ŝ(�L2)Û(T )Ŝ(�L1)| (0)i =
1

2

✓
1� ie

i(�L1��L2�!bT )

�ie
i�L2 � ie

i(�L1�!bT )

◆
, (2.174)

20Of course, photons also “interfere with themselves”, say when integrating interference patterns over
many shots of sending a single photon through a double slit.

21Even then, the condensation is a result of indistinguishability. So it still may be inappropriate to look
at “di↵erent” atoms as interfering with each other.
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Figure 2.15: A simple Mach-Zehnder interferometer. Each c labels an amplitude in the
outputs of the interferometer. Non-interfering outputs appear in light gray.

where �L2 is the phase of the laser at the second pulse. Detecting the output into state |bi,

|cb|2 =
1

4

�
�ie

i�L2 � ie
i(�L1�!bT )

� �
ie

�i�L2 + ie
�i(�L1�!bT )

�
(2.175)

=
1

4

�
1 + 1 + e

i(�L1��L2�!bT ) + e
�i(�L1��L2�!bT )

�
=

1

2
(1 + cos(��)) , (2.176)

where �� = �L1��L2�!bT collects all the phases from lasers and free evolution. The Ram-
sey interferometer’s phase di↵erence compares the laser oscillator to the quantum system’s
energy, making it the canonical choice for clocks and spectroscopy. The main motivation
here is to demonstrate how an interferometer translates phase di↵erences between arms into
population di↵erences that oscillate with ��.

In the limit of T ! 0, the laser oscillator has not had any chance to advance in phase
and the free-evolution phase is also 0. The back-to-back ⇡/2 pulses form a ⇡ pulse. For such
a vanishing phase di↵erence, �� = 0, we would expect the population to be fully transferred
to the detected state as is true for a ⇡ pulse. Indeed, the equation above produces this result.

2.6.2 Simplified Mach-Zehnder interferometer

The simple Ramsey interferometer su↵ers when using velocity-selective, counter-propagating
stimulated Raman transitions. The photon recoil separates the arms of the interferometer
and the arms’ waves no longer overlap after a short evolution time, producing no observable
interference. A ⇡ pulse in the center redirects the arms back toward one another, akin
to a spin-echo pulse. This is a Mach-Zehnder interferometer, shown in Fig. 2.15. The
diagram emphasizes that interfering output ports may have come from either of two inputs.
Amplitude in cb2 (and ca2) originates from the upper arm of the interferometer in |a, 0i prior
to the final beam splitter, while amplitude in cb3 (and ca3) originates from the lower arm of
the interferometer in |b, 2~ki prior to the final beam splitter.

Fig. 2.15 also emphasizes that there are truly 8 important states after the three-pulse
sequence (though only 6 are distinguishable at the output due to interference), not only 2
as we assumed in the Ramsey interferometer. Augmenting the framework to account for all
these levels is a bit cumbersome, but can be rewarding. The coupling between states at each
pulse is a bit more complicated than merely the coupling between the two hyperfine ground
states. One important feature we must demand from the framework is that it distinguishes
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the pulse outputs that do interfere from the ones that do not interfere. That would avoid
coupling states in the math that are not coupled in the experiment.

Labeling the outputs according to their fate at the end of the interferometer helps to
distinguish the state couplings. With 2 outputs from each of 3 pulses, there are 23 possible
routes through the three-pulse sequence, so that is the number of amplitudes we must track.
The state is therefore an 8-row column vector

| i =
�
ca1 cb1 ca2 cb2 ca3 cb3 ca4 cb4

�T
. (2.177)

The initial state is in |ai aimed at output 4, so the initial state is

| (0)i =
�
0 0 0 0 0 0 1 0

�T
. (2.178)

While this dissertation does not employ any Mach-Zehnder interferometers for science, work-
ing through its 8 ⇥ 8 pulse operators provides a blueprint for extending to the four-pulse
schemes we use, whose 16⇥ 16 pulse operators do not fit on the page.

We will label the pulse operators with the pulse index. The first beam splitter pulse
couples output in ca4 to output in cb1.
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0

BBBBBBBBBB@
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p
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. (2.179)

The mirror pulse in the center drives two couplings. It couples output in ca4 to output in cb3

and it couples output in cb1 to ca2.
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BBBBBBBBBB@
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1

CCCCCCCCCCA

. (2.180)

The final beam splitter couples four pairs of states. It couples output in cb1 to output in ca1;
it couples output in ca2 to cb2 and vice versa; it couples output in cb3 to ca3 and vice versa;
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and it couples output in ca4 to cb4.
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(2.181)

Neglecting the free-evolution phases between pulses, the output of the sequence is

ŜMZ3(�L3)M̂MZ2(�L2)ŜMZ1(�L1)| (0)i =
1

2

�
0 0 �e

i(�L1��L2) ie
i(�L1��L2+�L3) �e

i(�L2��L3) �ie
i�L2 0 0

�T
. (2.182)

For the simplest case, both the upper arm of the interferometer and the lower arm spend
the same amount of time in each state, so the free-evolution phase cancels anyway.22

We ultimately detect atoms in |bi, but we only want to account for interference between
the contributions to |bi that interfere, namely cb2 and cb3. So we compute

PMZb = |cb1|2 + |cb2 + cb3|2 + |cb4|2. (2.183)

Given perfect pulse e�ciencies, the amplitudes cb1 and cb4 vanish, but noting the detected
output this way helps to calculate amplitudes in four-⇡/2-pulse interferometers in which the
interferometer necessarily outputs amplitude into non-interfering outputs. The result is

PMZb =
1

2
(1� cos(��)) , (2.184)

where the phase di↵erence is �� = �L1 � 2�L2 + �L3.
In the limit of T ! 0, there are back-to-back ⇡/2-⇡-⇡/2 pulses that together form a 2⇡

pulse. For such a vanishing phase di↵erence, �� = 0, we would expect the population to
be fully transferred back to the initial state and remain undetected. Indeed, the equation
above produces this result.

2.6.3 Simplified Ramsey-Bordé interferometer

The Ramsey-Bordé interferometer o↵ers another solution to the Ramsey interferometer’s
overlap problem. Instead of sending the lower arm toward the upper arm with a mirror

22More exotic e↵ects may enter through the free-evolution phases, for example the gravitational redshift
integrates to a di↵erent result for each arm in vertically oriented interferometers.
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Figure 2.16: A simplified Ramsey-Bordé interferometer. Only the upper arm spends any
time with the excess kinetic energy of photon recoil, so this interferometer measures the
atomic recoil frequency. Each c labels an amplitude in the outputs of the interferometer.
Non-interfering outputs appear in light gray.

pulse, we may first stop the recoiling upper arm and send it backwards to the lower arm.
Mirror pulses are not an option for this task despite their e�ciency, because the lower arm
needs to retain amplitude in the stationary trajectory. Only a ⇡/2 pulse can produce both
amplitude for the upper arm to come to a stop and amplitude for the lower arm to remain
stationary. This necessarily shunts amplitude into non-interfering trajectories, reducing the
maximum possible contrast of the Ramsey-Bordé to 50%.23

There is nevertheless an advantage. Consider the trajectories in Fig. 2.16. Only the
upper arm spends time with excess kinetic energy from photon recoil. In the Mach-Zehnder
interferometer, that energy cancels out because both the upper arm and the lower arm spend
the same amount of time with that extra energy during free evolution. The Ramsey-Bordé
interferometer therefore measures the atomic recoil frequency !r = ~k2

/2m.
The state is begins as a 10-row column vector

| i =
�
cb1 cb2 ca3 cb3 ca4 cb4 ca5 cb5 ca6 cb6

�T
. (2.185)

The initial state is in |ai aimed at output 5, so the initial state is

| (0)i =
�
0 0 0 0 0 0 1 0 0 0

�T
. (2.186)

23The simple Ramsey-Bordé shown here has a contrast of only 25%. To achieve 50%, the non-resonant
outputs of the third and fourth pulses would need to get addressed by the final two pulses to form a conjugate
interferometer that contributes another 25% in contrast.
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The first pulse couples output in ca5 to output in cb1.
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The second pulse couples output in cb1 to output in ca3 and it couples output in ca5 to output
in cb2.
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The third pulse couples output in ca3 to output in cb4 and it couples output in ca5 to output
in cb6. At this point, we consider outputs aimed at cb1 and cb2 as o↵-resonant for these
reversed Raman beams, so they remain uncoupled for the third and fourth pulses.
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The final pulse couples output in ca3 to output in cb3, it couples output in ca4 to output in
cb4, it couples output in ca5 to output in cb5, it couples output in ca6 to output in cb6.
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(2.190)

Neglecting the free-evolution phases, the output of the sequence is
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We have again neglected the free-evolution phases between the pulses, which we treat below.
We ultimately detect atoms in |bi, but we only want to account for interference between

the contributions to |bi that interfere, namely cb4 and cb5. So we compute

PRBb = |cb1|2 + |cb2|2 + |cb3|2 + |cb4 + cb5|2 + |cb6|2. (2.192)

The result is

PRBb =
3

4
� 1

8
(1� cos(��)) , (2.193)

where the phase di↵erence is �� = �L1 � �L2 + (�L3 � �L4).

2.6.4 Laser phase

Having seen some basic interferometer schemes their signals at detection, let us treat the
phases in more detail. Above, we applied the beam splitter for a two-level system where only
one laser phase is present in spite of the fact that we drive interferometers with stimulated
Raman transitions that employ three-level systems. The treatment was nevertheless useful
in recognizing two patterns.
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• When an atom transitions from |ai ! |bi, the matter wave phase increases by the
laser phase. When an atom transitions back from |bi ! |ai, the laser phase reduces
the matter wave phase. This is evident from the two-level beam splitter in Eq. (2.48).

• The final interferometer phase di↵erence contributed by the laser interactions is the
sum over laser phases introduced to the upper interferometer arm minus the sum over
laser phases introduced to the lower interferometer arm. These sums should be taken
over the route that takes the input state to whichever output state is detected.

To be more explicit about the latter point, consider the Ramsey-Bordé interferometer in Fig.
2.16 where the state we detect is the opposite hyperfine state compared to the input state.
The upper arm of the interferometer transitions |ai ! |bi on the first pulse, |bi ! |ai on the
second pulse, |ai ! |bi on the third pulse, but does not undergo a transition at the fourth
pulse to end up in the final state we detect. The upper arm therefore requires accounting
for three laser phases. The lower arm of the interferometer only transitions |ai ! |bi at the
fourth pulse to end up in the state we detect, so it requires accounting for one laser phase.

In contrast to the two-level system, stimulated Raman transitions involve the phases of
two di↵erent laser beams i 2 {1, 2}, each with frequency !i and wave vector ~ki. Each beam
encounters the atom at position ~zj and time tj during the j

th pulse. The spatiotemporal
laser phase is

�L(i)j = ~ki · ~zj � !itj. (2.194)

We may view each beam as addressing a two-level system, !1 addressing |ai ! |ei and !2

addressing |bi ! |ei. When an atom absorbs a photon from field 1, its laser phase adds to
the matter-wave phase. When an atom emits a photon into field 2, the laser phase reduces
the matter-wave phase. A stimulated Raman transition therefore involves adding one beam’s
phase and subtracting the other beam’s phase. Because the propagation vectors are anti-
parallel, the product ~ki · ~zj appears with opposite sign for the two beams. To provide an
example, consider the first beam splitter in any configuration above. The atom’s amplitude
that undergoes the first transition (i.e. the upper arm) begins at time t1 in |ai and ends in
|bi, with |k1| > 0 and |k2| < 0 for the counter-propagating beams.

�L1 ! �L(1)1 � �L(2)1 = (k1z1 � !1t1)� (�k2z1 � !2t1) = (k1 + k2)z1 � (!1 � !2)t1. (2.195)

The spatial phase imprinted the matter wave is that of the full momentum-transfer vector,
but it is their frequency di↵erence that adds to the temporal component. Calculating these
phases also requires calculating the z position of the atom at the time of the pulse.

Experimenters may also intentionally modulate the laser phase in order to introduce a
phase into the interferometer. If the laser oscillator spends time at a di↵erent frequency
parameterized by !m, for example, the !t term in the phase will integrate to (!+!m)t over
the time spent oscillating at that frequency. Atom interferometry experiments performing
gravimetry often introduce an !m ramped linearly in time. That chirp compensates against
the interferometer phase introduced by the atoms’ gravitational acceleration along the beam
axis. Tuning the chirp rate to cancel the interferometer phase constitutes a measurement of
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the acceleration of the atoms with respect to the apparatus. In this dissertation, we apply a
constant !m to two pulses of a four-pulse interferometer in order to introduce a phase to a
geometry with no native phase.

2.6.5 Free-evolution phase: the action

We have thus far neglected the phase the matter wave accrues between laser pulses. Broadly,
the Hamiltonian drives these temporal dynamics. One must take care to consider the full
Hamiltonian including: the internal state energy of the atom, any e↵ect that perturbs that
internal state energy like Zeeman shifts, and external kinetic energy. The final term is the
one through which the recoil term enters the Ramsey-Bordé interferometer.

Computing the phase a matter wave accrues requires calculating the phase of the complex
state amplitude. The complex amplitude c for an initial state starting at |z0i to end its
trajectory at |zfi requires time-evolving the state like Eq. (2.10),

c(z0, zf ) = hzf |Û(tf � t0)|z0i, (2.196)

We must derive the operator Û(tf � t0), which we did previously only for eigenstates of
the Hamiltonian. Operating on the state with the Hamiltonian may alter the state if it is
not an eigenstate of the Hamiltonian. We account for this by performing N infinitesimal
time evolutions using the Hamiltonian at each instant in time separated by dt. After each
evolution, the state may change from |zii ! |zi+1i 6= |zii. The state | i after the full
evolution is

| i = e
�iĤ(tf�dt)dt/~ · · · e�iĤ(t0+dt)dt/~

e
�iĤ(t0)dt/~|z0i (2.197)

=

 NY
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e
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!
|z0i. (2.198)

The amplitude for taking a specific path Z = {z0, z1, ..., zN�1, zf} would be the product of
all the amplitudes for arriving at each intermediate state specified by Z,

c(z0, zf ;Z) = hzf |e�iĤ(tf�dt)dt/~|zN�1i · · · hz2|e�iĤ(t0+dt)dt/~|z1ihz1|e�iĤ(t0)dt/~|z0i. (2.199)

Feynman’s path integral approach takes an egalitarian stance on which path the state
takes. Each path is weighted equally, so they all interfere and their amplitudes add.

c(z0, zf ) =

Z
c(z0, zf , Z)dZ. (2.200)

To integrate over paths, each intermediate state in a path deserves its own integral, since all
intermediate states are equally weighted.

c(z0, zf ) =

Z
dzN�1

Z
dzN�2 · · ·

Z
dz2

Z
dz1hzf |e�iĤ(tf�dt)dt/~|zN�1i · · · hz1|e�iĤ(t0)dt/~|z0i.

(2.201)
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We can notate all the combinations as a product of all the integrals over the intermediate
states,

c(z0, zf ) =
NY

i=1

✓Z
dzi

◆
hzf |e�iĤ(tf�dt)dt/~|zN�1i · · · hz1|e�iĤ(t0)dt/~|z0i. (2.202)

The Hamiltonian that concerns us generally is

Ĥ =
p̂
2

2m
+ V (ẑ). (2.203)

The potential is usually a function of position, so we write it suggestively as V (ẑ). It may
be gravitational potential energy mgz, it may be a spatially-varying Zeeman shift in the
presence of a magnetic field gradient µbgFmFB(z), it could be a spatially-varying AC Stark
shift in the presence of a light intensity gradient like a dipole trap, etc. The full potential
also includes the internal state of the atom through the atomic binding potential. A single
element hzi+1|e�iĤ(t)dt/~|zii simplifies with a resolution of the identity 1 =

R
|pihp|/2⇡,

hzi+1|e�iĤ(t)dt/~|zii =
1

2⇡

Z
dphzi+1|e�i(p̂2/2m+V (ẑ))dt/~|pihp|zii. (2.204)

The momentum operator can return the eigenvalue p acting on |pi, while the potential
returns V (xi) acting on |xii and is constant with respect to the dp integral.

hzi+1|e�iĤ(t)dt/~|zii = e
�iV (zi)dt/~ 1

2⇡

Z
dpe

�ip2dt/2m~hzi+1|pihp|zii (2.205)

= e
�iV (zi)dt/~ 1

2⇡

Z
dpe

�ip2dt/2m~
e
ip(zi+1�zi)/~ (2.206)

The final term is a straightforward gaussian integral that yields

hzi+1|e�iĤ(t)dt/~|zii =
✓
�im

2⇡dt

◆1/2

exp

 
i

 
1

2
m

✓
zi+1 � zi

dt

◆2

� V (zi)

!
dt/~

!
. (2.207)

The primary upshot for stepping this far through the derivation is to illustrate how the
action – the kinetic minus potential energy integrated over time – describes the matter
wave’s free-evolution phase.

Eq. (2.202) prescribes integrating this result for each time step over all paths. References
[123, 91, 114] provide pedagogical accounts of the procedure for performing the integral. It
includes recognizing the action in the exponent, Taylor expanding paths about the classical
path that minimizes the action, and neglecting higher-order terms whose phases oscillate
rapidly and destructively interfere. The classical action Scl dominates the result.

c(zf , zi) / e
iScl/~ = exp

✓
i

Z tf

t0

(K � V )dt/~
◆
, (2.208)
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where K is the kinetic energy and V is the potential energy along the classical trajectory.
This is the prescription for calculating free-evolution phases we use when the atomic state
does not remain in an eigenstate of the full Hamiltonian.

The classical action conveniently depends only on the endpoints of the trajectory in a
linear potential. Gravity, for example, exerts a constant downward acceleration g. In terms
of the initial and final times and positions,

Scl =
m

2

�z
2

�t
� m

2
g(zf + z0)�t� m

24
g
2�t

3 � ~!s�t, (2.209)

where �z = zf � z0, �t = tf � t0, and !s describes the internal state energy including
any perturbations like Zeeman or AC Stark shifts. Computing the free-evolution phases in
interferometers with linear external potentials just requires classically solving for the particle
trajectories between laser pulses and inserting the endpoints into the equation above.

2.6.6 Other phases

There are other phase terms that enter interferometers, but are not particularly important
for this dissertation. We mention a few here merely to round out the introduction to atom
interferometry.

If the arms of the interferometer do not perfectly overlap at the end of the interferometer,
an additional matter-wave phase di↵erence enters given by the average of the arms’ momenta
p̄ and their spatial separation �z [59]. That is often called the separation or overlap phase.

��sep = p̄�z. (2.210)

This lack of overlap may result from a gravity gradient, in which the upper arm of the
interferometer spends more time accelerating at a lower gravitational acceleration than the
lower arm. One may also intentionally change the latter pulse separation T time with respect
to the first pulse separation time. That would change the phase because the trajectories do
not perfectly close. This technique is sometimes employed, not to measure phases, but to
trace out contrast envelopes that herald the “size” of the matter wave packet, which decreases
with temperature.

Just like the ring laser gyroscope, a Sagnac phase enters when two arms of an interfer-
ometer enclose a spatial area ~A, whose direction is given by the unit vector normal to the
enclosed area. The Sagnac phase enters when this area has any component parallel to an
angular momentum ~⌦, [53, 54]

��Sag =
2m

~
~A · ~⌦. (2.211)

There also exist finite-pulse e↵ects that account for the di↵erence between the actual
phase imprinted by the atom-laser interactions and our assumption of infinitesimally-short
pulses [94]. It is rather impressive that these phases are not a larger issue, given that the
laser oscillators span huge number of cycles during the course of a single pulse. Of course, the
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temporal phase that really matters is the di↵erence between the Raman beams’ frequencies
as evinced by Eq. (2.194). For our 160-ns pulses and 800-MHz frequency di↵erence, that is
still & 100 cycles. Instability in the Raman beam intensities or pulse shape and duration24

may introduce instability in the phases from finite-pulse e↵ects. That may be a source of
phase noise in the interferometers in this dissertation that limits our achievement of the
atom-snot-noise limit.

2.6.7 Raman Ramsey-Bordé phase

The interferometer geometry employed in this dissertation to measure the lithium recoil fre-
quency is the Ramsey-Bordé interferometer, generated with stimulated Raman atom optics.
We fully treat the phase of that interferometer here.

To close a Ramsey-Bordé interferometer, whose spacetime diagram is shaped like an
isosceles trapezoid, the momentum transfer must reverse for the third and fourth pulses
with respect to the first and second pulses. That reverses the sign of the dot product ~k · ~z
in the laser phases. To write the laser phases, we must tabulate the positions. We consider
an interferometer axis perpendicular to gravity so the trajectories are not accelerated. The
subscript u denotes positions for the upper arm of the interferometer and v denotes those
for the lower arm.

zu1 = 0 (2.212)

zu2 = 2vrT (2.213)

zu3 = 2vrT (2.214)

zu4 = 0 (2.215)

zl1 = zl2 = zl3 = zl4 = 0 (2.216)

The pulses occur at times t1 = 0, t2 = T , t3 = T + T
0, and t4 = 2T + T

0. The total laser
phase di↵erence is

��RBL =(k1 · 0� !1 · 0)� (�k2 · 0� !2 · 0)
� (k1(2vrT )� !1T ) + (�k2(2vrT )� !2T )

+ (�k1(2vrT )� !1(T + T
0))� (k2(2vrT )� !2(T + T

0))

� [(�k1 · 0� !1(2T + T
0)� (k2 · 0� !2(2T + T

0))] (2.217)

=� 8kvrT + 2(!1 � !2)T = �16!rT + 2(!1 � !2)T (2.218)

Any sign directly in front of a k denotes its propagation direction, any sign in front of
a parenthesis denotes a photon absorption (+) or emission (�) and the term in brackets
contains the laser phase of the lower arm that we subtract from the total phase di↵erence
compared to the upper arm to get the phase di↵erence.

24These could easily be e↵ects that drift due to thermal e↵ects in the switch AOMs.
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The classical action along each leg of the interferometer is

Su12 = m(4v2rT
2)/2T � ~!bT, (2.219)

Su23 = 0, (2.220)

Su34 = m(4v2rT
2)/2T � ~!bT, (2.221)

Sl14 = 0, (2.222)

assuming !b = 0. The total free-evolution phase is then

��RBFE = (Su12 + Su23 + Su34 � Sl14)/~ = 4v2rT/~� 2!bT = 8!rT � 2!bT. (2.223)

The full Raman Ramsey-Bordé phase is

��RB = ��RBL +��RBFE = �8!rT + 2�T. (2.224)

Had we included an acceleration �g, then the positions would evolve parabolically as zu2 !
2vrT � gT

2
/2 or zl4 ! �g(2T + T

0)2/2, for example. In that case,

��RB ! �8!rT � 2kg(T + T
0)T + 2�T, (2.225)

an algebraic exercise left to the reader.
Note that the two-photon detuning here � = !1 � !2 � !b references !b with the Raman

light o↵ since we restrict our treatment of matter-wave phases using the action to the time
between the pulses. That is, the AC Stark shifts from the Raman pulses do not enter the
phase of the interferometer, though it may include remaining e↵ects like Zeeman shifts.
One may worry that the AC-Stark-shifted internal energy during the pulses should still be
integrated up in the interferometer phase. That may be true, but the e↵ect scales with the
pulse time, not the pulse separation times. We therefore categorize that as a finite pulse
e↵ect that o↵sets the overall phase of the interferometer but does not a↵ect the scaling with
T or T 0. This e↵ect introduces some small phase noise if the timing or intensity of the Raman
beams is not controlled well.

Not all Ramsey-Bordé interferometers use Raman transitions. They may use Bragg
transitions for which the internal state of the atoms does not change as a result of the pulse
[72, 124]. In those cases, the internal state energy component of the 2�T phase vanishes. A
2(!1�!2)T phase remains. The laser frequency di↵erence should nevertheless closely match
the kinetic energy di↵erence. For an atom starting at rest, !1 � !2 = 4!rT to operate on
resonance, but then then laser phase and the free-evolution phase exactly cancel. A small
modulation on the laser frequencies or a noisy acceleration phase could restore a measurable
phase.

Simultaneous conjugate Raman Ramsey-Bordé phase

This dissertation also utilizes a conjugate Ramsey-Bordé interferometer. In fact, the conju-
gate interferometer is driven unavoidably due to the high-bandwidth pulses. Upon reversing
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U

p

-k1 , ω1k2 , ω2

|b , 0 ›

|a , 2ħk ›

pulses 1 and 2:

|b , 0 ›

|a , 2ħk ›|a , -2ħk ›

|b , 4ħk ›

pulses 3 and 4:

Figure 2.17: Raman transitions with reversed ~k1,2. Reversing the wave vectors to close
a Ramsey-Bordé interferometer makes possible a transition to higher momentum that is
ordinarily out of resonance due to its di↵erent Doppler shift. Our fast pulses drive both
transitions. Note that the roles of |ai and |bi are reversed here with respect to those in Fig.
2.7 because that is how this dissertation’s interferometer operates. This chapter, however,
assumes that !a < !b. Section 4.2 discusses how the associated correction is just a reversal
of the � phase term.

T TT’
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Figure 2.18: Simultaneous conjugate Ramsey-Bordé interferometers. High-bandwidth pulses
simultaneously drive both interferometers unavoidably.

~k1 and ~k2, not only may an atom in |a, 0i transition to |b,�2~ki as intended, but a transition
from |b, 2~ki to |a, 4~ki opens as Fig. 2.17 shows. The Doppler resolution between these
transitions’ resonances, 16!r, is well within the pulse bandwidth ⇠3 MHz. Driving this
transition leads to closing another interferometer whose spacetime diagram is an inverted
and sheared trapezoid shown in Fig. 2.18.
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The conjugate interferometer has positions

z
0
u1 = 0, (2.226)

z
0
u2 = 2vrT, (2.227)

z
0
u3 = 2vr(T + T

0), (2.228)

z
0
u4 = 2vr(2T + T

0), (2.229)

z
0
l1 = z

0
l2 = 0, (2.230)

z
0
l3 = 2vrT

0
, (2.231)

z
0
l4 = 2vrT

0 + 4vrT = 2vr(2T + T
0). (2.232)

The total laser phase di↵erence is

��0
RBL =(k1 · 0� !1 · 0)� (�k2 · 0� !2 · 0)

�
h
(k1 · 0� !1T )� (�k2 · 0� !2T )

� (�k1(2vrT
0)� !1(T + T

0)) + (k2(2vrT
0)� !2(T + T

0))

+ (�k1 · (2vr(2T + T
0))� !1(2T + T

0))� (k2 · (2vr(2T + T
0))� !2(2T + T

0))
i

(2.233)

=4(k1 + k2)vrT + 2(!1 � !2) = 16!rT + 2(!1 � !2)T (2.234)

The classical action along each leg of the interferometer is

S
0
u14 = m(v2r(2T + T

0))2/2(2T + T
0)� ~!b(2T + T

0) = ~(4!r(2T + T
0)� !b(2T + T

0),
(2.235)

S
0
l12 = 0, (2.236)

S
0
l23 = m(2vrT

0)2/2T 0 � !bT
0
, (2.237)

S
0
l34 = m(4vrT )

2
/2T. (2.238)

The total free-evolution phase is then

��0
RBFE = (S 0

u14 � S
0
l12 � S

0
l23 � S

0
l34)/~ = 8!rT � 2!bT � 16!rT = �8!rT � 2!bT. (2.239)

The full conjugate Raman Ramsey-Bordé phase is

��0
RB = ��0

RBL +��0
RBFE = 8!rT + 2�T. (2.240)

Had we included an acceleration �g,

��0
RB ! 8!rT � 2kg(T + T

0)T + 2�T, (2.241)

another algebraic exercise left to the reader.
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Figure 2.19: Four-pulse Mach-Zehnder interferometer.

T TT’

2ħk

z

t

ω1 ω2 ω1+ωm ω2-ωm

Figure 2.20: Lower four-pulse Mach-Zehnder interferometer with modulation. The laser
frequencies both step by !m for the final two pulses.

2.6.8 Four-pulse Mach-Zehnder phase

This dissertation employs an interferometer related to the Ramsey-Bordé in order to measure
7Li’s red tune-out wavelength. Also four ⇡/2 pulses, but without a k-vector reversal, we term
this one the “four-pulse Mach Zehnder” and treat its phase here.

The Ramsey-Bordé interferometer brought the upper and lower arms back together by
stopping the upper arm and sending it back towards the lower arm. An alternative is to
send the lower arm toward the upper arm as in the Mach-Zehnder interferometer. The arms
of the Mach-Zehnder are always in opposite hyperfine states, but the tune-out measurement
will need an interferometer that o↵ers time during which the arms are in the same internal
state. We can simply split the Mach-Zehnder’s ⇡ pulse into two ⇡/2 pulses [125]. This
interferometer has four pulses like the Ramsey-Bordé, but the k vectors never reverse.

Fig. 2.19 shows this four-pulse Mach-Zehnder interferometer. The pulses close two si-
multaneous interferometers. Both arms of each simultaneous interferometer are in a di↵erent
hyperfine state during T

0. We are interested only in the lower interferometer isolated in Fig.
2.20, whose spacetime diagram outlines a flat rhombus.

The positions are

zu1 = 0, (2.242)

zu2 = zu3 = zu4 = 2vrT, (2.243)

zl1 = zl2 = zl3 = 0, (2.244)

zl4 = 2vrT. (2.245)

Without any additional phases, the phase di↵erence of this interferometer would be 0. We
introduce a small modulation !m to the laser frequencies for the third and fourth pulses to
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imprint a controlled phase onto the interferometer. Beginning the modulation at the third
pulse forces the laser oscillators to advance in temporal phase at modified rates for the final
T between the third and fourth pulses.25 The wave numbers also change, but we give each
beam an equal and opposite modulation to avoid any modification to the recoil energy and
a spatial separation phase (k1+ k2) ! (k1+!m/c+ k2�!m/c) = (k1+ k2). The laser phase
is then

��FPMZL =(k1 · 0� !1 · 0)� (�k2 · 0� !2 · 0)
� (k1(2vrT )� !1T ) + (�k2(2vrT )� !2T )

+ (k1(2vrT )� !1(T + T
0)� (!1 + !m)T )

� (�k2(2vrT )� !2(T + T
0)� (!2 � !m)T )

� [(k1 · 0� !1(T + T
0)� (�k2 · 0� !2(T + T

0))] (2.246)

=� 2!mT (2.247)

The di↵erence in action along these trajectories is 0 in the absence of an acceleration, so the
full phase is

��FPMZ = �2!mT. (2.248)

With an acceleration,
��FPMZ ! �2kgT (T + T

0)� 2!mT. (2.249)

The sensitivity to acceleration was the impetus for this interferometer’s first application at
ONERA, where it was combined with Bloch oscillations to measure gravitational acceleration
[125]. We use it in this dissertation to di↵erent e↵ect.

Notice that the internal energies cancel in this interferometer since each arm spends the
same amount of time in each internal state. We will perturb those energies and their can-
cellation in the tune-out measurement. An intensity gradient across the arms will introduce
a di↵erence in the internal energies that integrates up over the time of an AC Stark-shifting
pulse.

2.6.9 Interferometer contrast

It is helpful – for planning experiments, projecting their sensitivity, and performing diag-
nostics – to estimate the expected contrast of interferometers. The contrast of an interfer-
ometer describes the amplitude of population oscillations from interference e↵ects. It is half
the di↵erence between the maximum and minimum normalized populations, divided by the
average.

C =
max(Pb)�min(Pb)

max(Pb) + min(Pb)
. (2.250)

25The laser frequencies may switch to the modified frequency any time between the second and third
pulses. The extra temporal phase from extra oscillation time cancels out.



CHAPTER 2. THEORETICAL TOOLS 68

This factor multiplies the cos(��) term in any interferometer output signal. For the Mach-
Zehnder interferometer, this can be 100% for perfectly e�cient pulses [126]. For the Ramsey-
Bordé (or four-pulse Mach-Zehnder), it is 50% or less due to wasted beam splitter outputs
that do not contribute to the interference signal.

Modeling interferometer contrast can be an integral part of projecting signals from new
experiments or understanding noise and decay in mature experiments. The formalism pre-
sented in Section 2.6.3, for example, establishes a foundation from which to predict inter-
ferometer contrast. Ine�ciencies in the beam splitters can be accounted for by calculating
pulse e�ciencies via a model like Eq. (2.115). Alternatively, one may perform Monte Carlo
simulations of pulse transfer probabilities given an initial atom velocity and location in the
intensity profile, each of which modifies the generalized Rabi frequency and pulse transfer
probability at the experimentally fixed pulse length. The latter is a more powerful method
as it allows accounting for di↵erent pulse e�ciencies at each pulse, since atoms’ thermal
velocities cause them to wander to experience di↵erent intensities for di↵erent pulses.

Fig. 2.16 shows the output amplitudes for a simple Ramsey-Bordé interferometer. The
maximum probability of detecting state |bi occurs when all the interference amplitude ends
up in cb4 and cb5, leaving no amplitude in ca4 or ca5. The minimum occurs when all that
amplitude diverts to ca4 and ca5 and none appears in cb4 or cb5. Consider the pulse e�ciencies
along the way for ending up at cb4. The atom must transfer from |ai ! |bi at pulse 1 with
e�ciency ⌘ab1 (ala Eq. (2.114), for example); then it must transfer from |bi ! |ai at pulse
2 with e�ciency ⌘ba2; then it must transfer from |ai ! |bi at pulse 3 with e�ciency ⌘ab3.
So the maximum probability of arriving at output b4 is ⌘ab1⌘ba2⌘ab3, when pulse 4 diverts no
amplitude to ca4 from cb4. Similar reasoning produces the maximum probability for ending
up in output b5: ⌘aa1⌘aa2⌘aa3⌘ab4. Those signals add. The probabilities of detecting the
non-interfering outputs cancel in the contrast’s numerator and add in the denominator. The
probability of ending up in output b1 is ⌘ab1⌘bb2; the probability for output b2 is ⌘aa1⌘ab2; the
probability for output b3 is ⌘ab1⌘ba2⌘aa3⌘ab4; the probability for output b6 is ⌘aa1⌘aa2⌘ab3⌘bb4.
The predicted contrast would be

CRB =
⌘ab1⌘ba2⌘ab3 + ⌘aa1⌘aa2⌘aa3⌘ab4

⌘ab1⌘ba2⌘ab3+⌘aa1⌘aa2⌘aa3⌘ab4+⌘ab1⌘bb2+⌘aa1⌘ab2+⌘ab1⌘ba2⌘aa3⌘ab4+⌘aa1⌘aa2⌘ab3⌘bb4
.

(2.251)
Perfect beam splitter e�ciencies produce an output probability of 3/4 � cos(��))/8 as

derived in Section 2.6.3. We could also parameterize this signal with a background probability
B around which the population oscillates and the contrast C.

PRBb = B � C
2
cos(��). (2.252)

2.6.10 Atom shot noise

Atoms are quantum, insofar as individual atoms are countable. The quantization of atoms
produces a fundamental noise floor when detecting atom interferometer outputs. We quantify
that shot noise here.
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The squared amplitudes at the end of the interferometer describe output probabilities.
Suppose 10 atoms each have equal probability of being detected in |ai or |bi. Perhaps 6
of them end up being detected in |bi and 4 in |ai. That 60/40 split is not inconsistent
with the underlying probability, it is merely a consequence of detecting the probabilistic
outcome of a discrete number of atoms. That deviation from the underlying probability is
shot noise. Poissonian statistics show that the shot noise on N total atoms grows as

p
N .

Interferometer experiments are not directly aimed at measuring atom numbers, but rather
use the number to estimate a phase di↵erence and measure an associated quantity of interest.
We are interested in the noise d�� on the phase di↵erence.

An interferometer’s precision is best when the interferometer is most sensitive, which
occurs when the signal is most highly sloped and most sensitive to phase di↵erences. At
such a “zero crossing” of the fringes, the signal is near the number of atoms around which
the fringes oscillate. That value is NB (typically N/2), so the atom shot noise is dS =

p
NB

at detection. This produces an uncertainty in determining the phase di↵erence of interest

d�� =

✓
d��

dS

◆
dS. (2.253)

The signal’s phase sensitivity dS/d�� depends on the signal

S = NPb / N
C
2
cos(��). (2.254)

We have already assumed that the phase di↵erence is nearly an odd half integer of ⇡ radians,
where the phase sensitivity is highest. There, the interference term and signal vary linearly
in ��, so S ⇡ NC��/2 and dS/d�� = NC/2 and

d�� =

✓
d��

dS

◆
dS =

2
p
B

C
p
N
. (2.255)

Increasing the atom number helps reduce the shot-noise-limited phase noise in an interfer-
ometer, as does increasing the contrast.
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Chapter 3

Experimental tools

The experimental apparatus supporting the work in this dissertation o↵ers several new tech-
niques to the community’s repertoire. In one, a dual-polarization imaging scheme allows for
taking two cold-atom images in rapid succession without the need for an expensive camera
equipped with frame transfer. That allows us to normalize detection to the atom number
that fluctuates from shot to shot. We further utilize the absorption images to measure mag-
netic field gradients. We also describe a vacuum tube circuit that enables fast switching of
two continuous-wave laser beams’ directions, in far less than a microsecond. Finally, while
physicists have optically pumped to other atoms’ magnetically-insensitive states before, we
demonstrated it for the first time in 7Li and describe the setup below. Along the way, we
o↵er a cautionary tale to folks heating an oven that loads a 2D magneto-optical trap cross.
Most of the other techniques are borrowed from previous generations, though we nevertheless
describe the machine in enough detail to set course for a new student building up a related
a tool.

3.1 Timing and control with Cicero

Much of the digital and analog control signals are timed and controlled in Cicero, a GUI-based
control software written for atomic physics experiments [127]. Cicero delivers the high-level
user input to Atticus, a server that communicates with National Instruments hardware.1

The words generated by Cicero are executed by an NI PCIe-6535 (“Dev1”) that controls the
digital outputs for the experiment and an NI PCI-6723 (“Dev4”) that controls the analog
outputs. The clock rate for the words is 100 kHz, so the finest temporal resolution we achieve
through the interface is 10 µs. When we demand faster tasks, we use a digital signal from
Cicero as a trigger for a faster circuit like a pulse generator.

1“Cicero” refers both to only the client-side portion of the architecture, as well the package of Cicero
plus Atticus.
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3.2 The laser system

3.2.1 Master laser

The alkalis’ cooling and trapping transitions have linewidths less than 10 MHz. To stabilize
lasers to such a fine feature, at least one master laser must directly interrogate an atomic
sample. Our master laser is a Toptica DL pro, an external cavity diode laser (ECDL), that
outputs ⇠15 mW of light near 671 nm.

Modulation Transfer spectroscopy

Most of the power interrogates an aliquot of lithium separated from the main chamber. A
heating belt warms the lithium only at the center of a heat pipe capped with windows that
are bu↵ered from the lithium by Argon gas [128].

The laser performs modulation transfer spectroscopy (MTS) [129] in the heat pipe [128,
114]. The beam first splits into two. A resonant electro-optical modulator (EOM) modulates
the phase of one beam near 13 MHz before it propagates through the sample. The other
beam remains unmodulated and propagates through the sample counter to the modulated
beam. A nonlinear mixing process transfers the modulation from the modulated beam to
the unmodulated beam near a spectroscopic resonance. As the laser wavelength scans, a
photodiode detects the resulting modulation near the resonances. Demodulating the signal
with the appropriate o↵set phase produces a signal that sharply crosses through 0 at any
resonance. A cable of carefully selected length tunes the demodulation phase by sending the
oscillator frequency through a fixed delay line.

We interrogate the lithium vapor on the D2 line (the 2S1/2 ! 2P3/2 transition). There are
three spectroscopic features: |F = 1i on D2, |F = 2i on D2, and a crossover resonance [130]
in the middle. The spectroscopic features have di↵erent strengths. The crossover resonance
o↵ers a particular convenience because it symmetrically splits the two transitions, both of
which are needed for cooling and trapping. The ground-state splitting between |F = 1i and
|F = 2i is roughly 803.5 MHz in 7Li, so each state sits 401.75 MHz from the crossover.
That splitting is easily accessible by acousto-optical modulators (AOMs). The experiment
previously used the error signal at the crossover resonance, but the crossover feature is weak.
The transition for |F = 2i is larger by a factor of ⇠4 and provides a steeper error signal. To
take advantage of that feature, a double-passed 200-MHz AOM reduces the laser frequency
by ⇠400 MHz before sending it to the MTS setup. The output of the ECDL then locks to
a frequency 400 MHz above the |F = 2i transition, very close to the crossover feature.

ECDL lockbox

The error signal enters into a servo box shown in Fig. 3.1.2 Such a lockbox provides
feedback for three ECDLs on the experiment. The servo can be configured to ramp the

2This figure omits the supply voltages and the regulators that stabilize them (like those in Fig. 3.2).
It is also best practice to include additional shunt capacitors to ground on each power connection for each
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Figure 3.1: Ramping lockbox circuit for ECDLs.

laser wavelength in a triangle wave. Provided the integrator switch is open, the integrated
output of OA4 is amplified by OA5 and sent into a Schmitt trigger OA6. The lock-or-ramp
potentiometer functions like an adder that adds the error signal and the ramp signal, fully
preferring one or the other when tuned all the way clockwise or counterclockwise. If the lock-
or-ramp potentiometer passes the Schmitt trigger voltage on to OA3, the Schmitt trigger
output gets integrated on OA4 until the di↵erential input at OA6 reverses and the output
rail reverses, thus reversing the ramp.

When the lock-or-ramp potentiometer selects the input error signal from MTS, OA3
receives no signal from the ramp. The box then provides proportional and integral feedback
(with gains tunable by potentiometers) to the error signal for the ECDL’s current and slower
feedback for the piezo.

3.2.2 Injection-locked slave lasers

A few mW of optical power is sampled from the master ECDL and “injection locks” two slave
lasers.3 Lasers amplify whatever resonant mode is dominant, so sending light backwards into
the diode seeds that mode and encourages the laser to amplify it. An optical isolator placed
just after the diode rejects parasitic modes that may propagate backwards from farther down
the setup and compete with the injected mode. The injected mode is intentionally aligned
into the rejection port of the isolator so that it can pass backwards through the isolator and
reach the laser diode. Injection locking diode lasers serves as a first stage of amplification,
amplifying roughly 1 mW of injected light into ⇠100 mW output.

E�cient and stable injection locking requires a few steps. First, the temperature and
current of the diode should be stabilized to values that provide considerable power at a

operational amplifier at its location. This helps redirect AC noise that may have been induced between the
opamp and supply.

3The master-slave nomenclature is standard but quite unfortunate. The slaves should revolt and demand
promotion to “apprentices”.
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wavelength within 10 GHz of the target. Increasing the temperature increases the length
of the cavity set by the diode facets, which increases the resonant wavelength. Tuning the
current also slightly modifies the diode temperature, so increasing the current increases the
wavelength. We stabilize the current with homebuilt, low-noise current controllers [131]. The
temperature is controlled by a thermo-electric cooler (TEC) attached to the housing and a
thermistor (Thorlabs TH10K) through which a feedback controller (Wavelength Electronics
PTC2.5K-CH, e.g.) sends 100 µA. We heat diode lasers manufactured for 660 nm (e.g.
Opnext HL6545MG) to ⇠50�C to increase the wavelength to 671 nm.

Second, the seed’s spatial mode should be matched with the diode’s output as well as
possible. The propagation axes must also be overlapped, by walking the injection seed’s
mirrors before it enters the isolator. Even when the diode’s polarization is matched to the
isolator’s axis, some optical power will still be rejected, providing a target after the isolator
for overlapping the two beams. The diode may output a rather poor spatial mode, so it
is often best to try to overlap the injection seed with the most intense lobe of the diode’s
mode. Once the modes are overlapped, tuning the current within a range of several mA
should indicate evidence of locking, evinced by a spectral peak that remains stationary with
small perturbations to the current.4 Tweaking the injection seed alignment or temperature
may improve the current range over which the laser locks, a 1 mA range being a strong and
stable lock.

A slave laser can even injection lock to the sideband of a frequency-modulated source [132]
with appropriate optimization of the current and temperature. Sideband injection locking
can be useful for atoms other than lithium where the ground-state hyperfine splitting exceeds
the range of AOMs, but is within the range of EOMs. Employing this technique for 7Li would
provide access to the D1 in 7Li or to the D-line transitions of 6Li.

Lock monitoring

Sampling the laser spectrum is critical for operating the apparatus. We use a homebuilt
Fabry-Perot cavity with one mirror mounted on a piezo that allows tuning of the resonant
condition. A triangle wave voltage applied to the piezo ramps the resonant frequency of
the cavity back and forth, while a reverse-biased photodiode terminated at an oscilloscope
detects the transmitted light.

The circuit in Fig. 3.2 generates a low-voltage triangle wave that serves as an external
control input to the high-voltage piezo controller (Thorlabs MDT693A), which drives the
piezo. Fig. 3.3 shows the trace for the triangle wave and a locked slave.

3.2.3 Frequency manipulation

An alkali MOT requires two optical frequencies. One cools the atoms, stimulating the
absorption of thousands of photons and their momenta that oppose the initial momentum

4If no stationary peak is observable, at least an influence should be observable in which the spectrum
changes reproducibly when blocking and unblocking the injection seed.
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Figure 3.3: Locked slave laser. The yellow trace shows a ramp in the triangle wave modu-
lating the Fabry-Perot cavity length. The blue trace shows the transmitted spectrum of an
injection-locked locked slave laser.
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Figure 3.4: Polarization impurity in a quadrupole field. Black arrows represent the
quadrupole magnetic field for anti-Helmholtz coils. Red arrows represent the propagation of
MOT light. Light polarization is defined with respect to the local magnetic field direction.
Even if a polarization is purely �+ along an axis (here x), the angle of the field o↵ axis pre-
cludes a pure polarization. This polarization impurity prohibits a closed cycling transition
and requires repump light for multi-dimensional MOTs.

of the atom. The cooling transition should be closed so that an atom scattering a photon
has no choice but to decay back to the same state and continue absorbing photons and
momentum. For example, a 7Li atom in |F = 2,mF = 2i could absorb �+-polarized light to
|F 0 = 3,mF = 3i, from which the only dipole-allowed transition back to the ground state is
to |F = 2,mF = 2i. Rinse, lather, repeat. In one dimension, cooling light alone is su�cient
provided that the polarization and magnetic field to which its referenced are pure.

In three dimensions, a quadrupole magnetic field (from anti-Helmholtz coils) generates
magnetic field gradients in all three directions. Precisely on one axis, the gradient points
purely along that direction. The field direction points at an angle o↵ axis. For a beam
propagating along an axis, the angle introduces a nonzero projection of the polarization
onto the field axis that corresponds to a ⇡ polarization component. The presence of the ⇡
component allows transitions outside the cooling transition and opens decay paths to the
|F = 1i state.

Including a repump frequency recovers atoms that decay into |F = 1i and allows them to
continue cycling on the cooling transition. For atoms with unresolved excited-state hyperfine
structure like Li, the polarization impurity not only permits the |F = 2,mF = 2i ! |F 0 =
3,mF = 2i transition, but also those to other hyperfine states like |F = 2,mF = 2i ! |F 0 =
2,mF = 2i, further opening the cooling transition to leakage. Our Li MOT uses roughly
equal optical powers for cooling and repump.

The cooling and repump light originates from a single slave laser injection locked by the
master laser near the ground state D2 crossover frequency. A polarizing beam splitter (PBS)
cube splits the optical power. Half the power double passes through a 200-MHz AOM to
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lower optical frequency that serves as cooling light on the |F = 2i D2 transition, while the
other half double passes through a di↵erent 200-MHz AOM to higher optical frequency that
serves as repump light on the |F = 1i D2 transition.

The cooling and repump light overlap with orthogonal polarizations on a PBS. A half wave
plate rotates both polarizations and subsequent PBS projects power from both frequencies
onto the same polarization axis.5 The combined repump and cooling frequencies enter an
optical fiber then a tapered amplifier before cooling and trapping atoms in the vacuum
chamber.

Two separate slave lasers contribute light manipulated in this way, one for a 2D MOT
that traps hot atoms out of the oven and one for the 3D MOT that traps atoms pre-cooled by
the 2D MOT. The four AOMs allow for independent optimization of the 2D and 3D MOTs.

3.2.4 Tapered amplifiers

The slave lasers amplify an injection seed available from the master laser from ⇠1 mW to
⇠100 mW. Much of that power is sacrificed to AOM e�ciencies or fiber-coupling e�ciencies,
depending on the application. Tapered amplifiers (TAs) provide another means of increasing
the optical power.

A TA is a diode laser with a geometrically tapered gain region [133]. The optical gain
in diode lasers originates from the level dynamics of charge carriers in the junction, so the
gain must saturate as the stimulated emission rate approaches the carrier injection rate.
The tapered geometry o↵ers a clever way around the gain saturation. The gain saturates
sooner for regions with higher optical intensity. By focusing the beam into the gain region
and matching the taper angle to the divergence angle of the beam, the edges of the beam
profile where the intensity remains low may still experience gain even though the center
of the beam has saturated the gain of the diode. Furthermore, the taper distributes the
amplified optical power over a larger area at the output facet, which helps to avoid the
diode’s material damage threshold at high power. Optimizing the output power of the TA
requires finely optimizing the placement of the lens that focuses the input beam into the
gain region. The output of the TA is nearly a top-hat in intensity (not a Gaussian).

The taper is only helpful perpendicular to the diode junction where emission occurs, so
the output facet of a TA has a dramatic aspect ratio and leads to a beam that diverges
astigmatically. To couple the beam into an optical fiber, we use an output coupling lens
to collimate the beam on a single axis. A cylindrical lens collimates the other axis, ideally
placed where the waists of the two axes are identical. The placement of both lenses e↵ects
the fiber-coupling e�ciency.

Three 500-mW TAs amplify optical power in this experiment. The TA inside a Toptica
DL Pro (housed along with the master laser) amplifies the cooling and repump light for the

5This recombination tactic wastes half the optical power. In principle, these polarizations can be left
orthogonal and coupled into an optical fiber, one along the slow axis and one along the fast axis. If the
destination is a tapered amplifier, doing so would not help tremendously because the amplifier will prefer
one polarization over the other.
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Figure 3.5: Locking a dual-seeded TA. Tuning the current and temperature of the TA
modifies the output modes, monitored here on the Fabry-Perot cavity. On the left, the
two modes of interest (here, 3D MOT cooling and repump) appear to be stronger than the
sidebands. On the right, while the TA seems distracted by its sidebands, operating here
always produces better results.

3D MOT. A Toptica DC 110 controls its current (DCC 110) and temperature (DTC 110).
A Toptica BoosTA with built-in current and temperature control amplifies the cooling and
repump light for the 2D MOT. A homebuilt assembly amplifies light for driving the Raman
transitions that generate the interferometer. A homebuilt circuit controls its current, limited
to 1 A, and a Wavelength Electronics servo controls the temperature. Unlike the slave diodes,
the TA chips we use output more power when cooled below room temperature.6 All three
TA chips were replaced over the course of the experiment, each housing volunteering its own
vagaries.7 We purchase our replacement chips (Eagleyard TPA-0670-0500) from XSoptix, a
women-owned small business.

We seed the 2D MOT and 3D MOT TAs with combinations of cooling and repump light,
two modes that compete for gain in the TA. Under this dual-seeded condition, nonlinear
processes in the TAs produce output in sideband modes that are removed from the dual seeds
by the seed splitting. While these sidebands seem like distractions from the desired modes,
they proved to be positive indicators of TA behavior. A TA with strong and well-resolved
sidebands always trapped more atoms at lower temperature. Tuning the temperature and
current of the TAmodifies this mode structure, so optimizing those parameters has a powerful
impact on the health of the experiment.

The output of the 3D MOT TA is fiber-coupled and enters a homebuilt one-to-six-beam
fiber splitter atop the vacuum chamber (Fig. 3.6). The six output beams are distributed,
circularly polarized, telescoped, and enter the main chamber to generate the 3D MOT.

6Cooling introduces the opportunity for condensation of moisture onto the chip, which shorts the leads
and destroys it. We take care to avoid the dew point and keep the chip above ⇠14�C.

7The BoosTA disallows realignment of the output beam, which was no longer exiting the output window
of the box after replacement. I glued a mirror inside and drilled a hole in the box to send the beam out the
side. Not to worry - I colored the rim of the drilled hole in black Sharpie to prevent nefarious and deleterious
reflections.
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Figure 3.6: Fiber splitter. A single input beam splits into six through a cascade of half-
wave plates and polarizing beam splitters. Quinn Simmons and Simon Budker built this
subsystem.

2N7000

IRF510 IRF510
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4.7 kΩ

15 V

TA

Figure 3.7: Current thief for 3D MOT TA. A TTL signal controlled by Cicero switches the
MOSFETs on or o↵. When the TTL is high, the 2N7000 conducts and pulls the IRF510
gates low to turn them o↵, permitting current to pass through the TA chip. For high TTL,
the voltage drops from -0.439 V to -2.769 V from anode to cathode. When the TTL is low,
the 2N7000 does not conduct, sending the IRF510 gates high and allowing them to conduct
and steal the current from the TA. There are two IRF510s in parallel because one did not
sink enough current alone. For low TTL, the voltage drops from -1.669 V to -1.784 V from
anode to cathode.
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Figure 3.8: Frequency o↵set ”trombone” lock. An optical beat note mixes with an LO into a
low-frequency signal. Tuning the length of the delay line, like a trombone, tunes the amount
of phase �� the low-frequency signal accrues before recombining with itself.

It is important during interferometry that no stray light close to an atomic resonance can
scatter o↵ an atom and destroy its coherence. 3D MOT light leaking into the chamber poses
such a risk. While extinguishing the AOMs that generate the 3D MOT TA seeds reduces
the light, the TA still outputs light when unseeded. We further extinguish the light in the
chamber during interferometry with a current thief in Fig. 3.7 that steals the current from
the TA in response to a digital control voltage. Removing the current source from the TA
prevents any light from entering the chamber.

3.2.5 External cavity diode lasers

Three ECDLs serve the experiment, including the master laser. The laser used to measure
the tune-out wavelength (the “Stark ECDL”8) is a commercial ECDL, a Toptica DL Pro
with current and temperature control provided by a DLC Pro.

A homebuilt ECDL [128] generates ⇠20 mW of light for optically pumping (OP) 7Li to
the |F = 2,mF = 0i ground state. Circuits designed by Brent Young in 1991 control the
current and temperature of the OP ECDL. The diode in the homebuilt TA is an Opnext
HL6555G, which has been discontinued. A power outage claimed the original diode and the
final replacement occupies the housing now. Should a new diode be required in the future,
the Ushio HL65051DG should be a suitable substitute.

A servo like that in Fig. 3.1 locks each ECDL. The error signals for the servos are
generated di↵erently. MTS provides the error signal for locking the master laser. Both the
OP ECDL and the Stark ECDL generate error signals using electronically-detected optical
beat notes as described below.

Frequency o↵set “trombone” lock

The OP ECDL uses a frequency o↵set “trombone” lock for the error signal [134]. The
OP ECDL beats against light from the injection-locked 2D MOT slave. Mixing the beat

8Throughout this thesis, I enjoy artistic liberty in referring to this laser and its emission as the Stark
ECDL, Stark laser, Stark-shifting beam, Stark beam, or related terms that suit the mood.
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Figure 3.9: Frequency generation for phase lock. A phase lock stabilizes the optical beat
note of the Stark ECDL against the Raman slave. Fig. 3.10 details the “Phase lockbox”
referenced above.

note against an LO at nearby frequency produces an intermediate frequency at the mixed-
down beat note fMDBN . The signal at fMDBN gets amplified and split. One output of a
power splitter goes directly into a mixer while the other output travels through a cable of
fixed length before entering the mixer. The delay line of length L introduces a phase shift
�� = 2⇡fMDBNL/(2c/3), where the speed of the signal in the cable is roughly 2/3 the speed
of light. Multiplying cos(!MDBN t) by cos(!MDBN t+��) yields a term cos(��). The error
signal is 0 when that term is 0. Depending on the sign of the inversion switch in the lockbox,
the trombone lock will lock either when the delay line introduces an even- or odd-integer
multiple of ⇡. This OP ECDL locks at fMDBN around 600 MHz.

The trombone lock is particularly simple to set up, involving mostly commercial Mini-
Circuits components and a standard servo. A trombone lock originally stabilized the Stark
ECDL, but tuning the LO changed both the amplitude of the error signal and the fMDBN .
That inadvertent frequency tuning introduced a systematic error into the tune-out measure-
ment and was di�cult to track.

Phase lock

Stabilizing the Stark ECDL with a phase lock provided far better stability with tuning.
The circuit begins by manipulating an optical beat note as shown in Fig. 3.9. A fast
photodetector detects the optical beat note between a sample from the Stark ECDL and
the Raman slave that is injection-locked near the D2 crossover resonance. The beat note
mixes against an oscillator derived from a 4-GHz Agilent signal generator. The Agilent does
not output frequencies large enough to shift the Stark laser to tune-out, so we multiply the
Agilent frequency by splitting its power and mixing it against itself. That produces higher
harmonics, including a component at the tripled frequency and the quadrupled frequency,
albeit at reduced amplitude. To lock near the tune-out wavelength about 6.7 GHz below
the D2 reference, we lock to the tripled harmonic with the Agilent tuned near 2.5 GHz (7.5
GHz). To perform D1 spectroscopy about 10 GHz below the D2 reference, we lock to the
quadrupled harmonic with the Agilent tuned near 2.7 GHz (10.7 GHz). The mixed-down
beat note near 80 MHz enters into a phase lockbox that compares it to an 80-MHz LO signal
from the Aux output of the VCO that drives the 80-MHz AOM switch that shutters the OP
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Figure 3.10: Phase lockbox. The circuit inputs two signals at di↵erent radio frequencies and
outputs a voltage proportional to their phase di↵erence. Weicheng Zhong built this box and
graciously donated it to the tune-out cause.

light. The lockbox, described below, locks the mixed-down beat note to 79.67(1) MHz. The
error in the lock tone is the standard deviation of measurements from a frequency counter
over the range of frequencies we use to measure tune out.

Fig. 3.10 shows the phase lockbox that compares the mixed-down beat note and the
80-MHz VCO. Note that the box operates on ECL logic as opposed to TTL, which improves
the speed. The AD96687 is an ultrafast comparator that converts each sine-wave input into
a square wave at that frequency. To improve the capture range of the lockbox, which is
limited by the frequency response of the AD9901 phase discriminator, we divide down the
80-MHz frequency. The Q3 output of the MC10H016P divides the input CP by 16 and the
Q0 output divides CP by 2, so the cascaded chips divide the 80-MHz frequency by a factor
of 32 to ⇠2.5 MHz. The two frequencies drive the REF and VCO inputs of the AD9901
phase discriminator, but with opposite sign. At lock, these two inputs are 2.5-MHz square
waves 180� out of phase. The discriminator then outputs a square wave at 2.5 MHz. The
AD620 performs two functions. At lock, we want the error signal output to be 0 V, not
the average of the ECL levels, which is closer to -1.4 V. The AD620 acts as a comparator
and shifts the average level back up to 0 V. Furthermore, the signal should no longer be a
square wave. It should be the cycle-averaged level of the square wave. The AD620 has a
slow frequency response, with a gain-bandwidth product around 120 kHz. It therefore acts
like a low-pass filter on the much higher 2.5-MHz input frequency and averages the square
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Figure 3.11: Vacuum chamber and beam axes. The 2D MOT portion of the chamber is
omitted so as not to obscure the view. The gold annuli attached to the chamber are the
quadrupole magnetic field coils.

wave. The resulting output is a voltage linear in the phase di↵erence between the two input
frequencies.

3.3 The chamber

Lithium is metallic at room temperature. To generate appreciable vapor pressure, we heat
a sample with natural isotopic abundance9 to around 400�C10. A Variac tuned near 80 V
AC drives a heating belt wrapped around the oven. A 2D MOT with a permanent magnet
traps the hot gas and provides an initial stage of cooling. The design is similar to that in
[135] and is described in [136, 128]. If the oven temperature is too low, too little vapor is
available for trapping. If the oven temperature is too high, collisions of the atoms trapped
in the 2D MOT with background atoms are too frequent. Optimizing the oven temperature
for atom flux can significantly improve atom loading rates.

The 2D MOT remains untrapped along one axis. Along that axis, we send a push
beam resonant with the |F = 2i transition on the D2 line to push the atoms through a
di↵erential pumping tube into the 3D MOT chamber. The di↵erential pumping tube isolates
the interferometry chamber from the high-pressure flux from the oven.

9Natural abundance is roughly 92% for 7Li and 8% for 6Li.
10A thermocouple fixed to the oven chamber underneath the heating belt reads 386�C.
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Figure 3.12: 3D MOT. In the best of times, the 3D MOT (the red orb at center stage) glows
with a sanguine vigor. (10/18/2017)

The 3D MOT chamber has a total of 8 viewports (see Fig. 3.11). The two large viewports
face north and south and their perimeter supports the 3D MOT anti-Helmholtz coils that
generate the tunable magnetic quadrupole field for trapping (the gold annuli in Fig. 3.11).
They have a hollow core through which tap water flows to cool them.

An ion gauge registers the pressure on the 2D MOT side of chamber as ⇠ 10�7 torr. An
ion pump (Varian StarCell VacIon Plus 40 L/s) attached to the science chamber maintains
the pressure, likely around ⇠ 10�9 torr. The current output of our ion pump lost credibility
many moons ago. The MOT lifetime of ⇠1-2 s, judged by eye, suggests that the pressure
is on the order of 10�9 torr. The MOT lifetime is limited by collisions with background
gas molecules, which increase with pressure. Given collision cross-sections with background
gases, the MOT lifetime is a probe of the vacuum pressure [137].

3.3.1 Sample maintenance

Lithium corrodes glass. This behavior motivated the inert bu↵er gas that protects the
viewports in our MTS spectroscopy cell.11 It also contributed to a vacuum leak whose
culprit is shown in Fig. 3.13

Light-induced atomic desorption (LIAD) discourages lithium atoms’ excursions into the
glass substrate [138]. The threshold wavelength for desorbing lithium from fused silica is 470
nm, so we illuminate the window that replaced the one shown in Fig. 3.13 at 405 nm with

11It is also an alleged reason that the Cronin group in Arizona never attempted to measure lithium’s
tune-out wavelength or polarizability.
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Figure 3.13: Derelict viewport. Hot lithium ejected from the oven destroyed a vacuum seal
in the 2D MOT chamber in April 2015, here visible in the black pollution of the viewport
and the bubbling at the glass-metal interface. A UV LED can discourage this failure mode.
(04/17/2015)

a Thorlabs M405LP1.12 The LED produces a noticeable reduction in the blackening of the
window in the region of the illumination.

Atomic lithium reacts rapidly with atmospheric gases upon exposure, requiring the sam-
ple to remain under vacuum for purity. Lithium reacts with hydrogen gas to form lithium
hydride LiH and water to form lithium hydroxide LiOH. Any vacuum leak, like that recorded
in Fig. 3.13, compromises the sample’s integrity. Atomic lithium appears metallic, so any
di↵use grayscale is a harbinger of future work.

To recover the sample after a leak, we first close the gate valve separating the 2D MOT
and 3D MOT chambers and wrap the 2D MOT chamber in a disposable glove bag. With
all the necessary tools packed into the glove bag, we seal the bag’s open end around the
di↵erential pumping tube, flow inert gas (Ar, for example) into the chamber through an
inlet, and create a small slit in the bag that serves as an outlet. Replacing the derelict
vacuum port, we opened the oven to find a blackened sample surface. We scraped o↵ the
black surface layer to reveal the metallic lithium below. The molten lithium had condensed
around the nickel gasket that mates the oven to the 2D MOT chamber and created a seal
that was incredibly di�cult to erode.13 Future samples should not be overfill the oven well.
After replacing the gasket, we replaced the window, and resealed the vacuum.

For experiments, we heat the oven to ⇠ 400�C using heating belts. To avoid heating the
viewports, we heat less the neck that connects the oven well to the 2D MOT chamber. That
introduces a thermal gradient such that the coldest spot along the neck is at the mating

12David Weld’s group at the University of California, Santa Barbara tipped us o↵ to this strategy.
13We slowly scraped it away with a box cutter to free the gasket. I can neither confirm nor deny that I

injured myself in this process.
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(a) Plugged oven neck (04/15/2016) (b) Cleared plug (04/15/2016)

Figure 3.14: Condensed lithium plugs oven flux. On the left, the metallic structure has
grown into the center of the oven neck and capped o↵ the oven exitance. On the right,
deliberate heating melted the plug and removed the occlusion.

between the neck and 2D MOT “X”. Hot lithium vapor flies up into the chamber from the
oven and atoms that evade or escape the trap rain back down onto the cold mating and
quietly condense there. The condensed metal protrudes farther and farther into the center
of the neck over time. After a few years of continuous operation, this constriction sealed and
prevented any vapor from exiting the oven.

The left photo of Fig. 3.14 shows the condensed lithium closing o↵ the oven. To remove
the solid plug, we uninstalled the permanent 2D MOT magnets and addressed the neck with
a heat gun for ⇠1 hour. That melted the plug back into the neck and liberated the lithium
vapor for experiments.

3.4 Magnetic fields

A pair of anti-Helmholtz coils generates the magnetic quadrupole field for the MOT. There
are 64 windings of wire, with an 8⇥8-wire square cross section. The inner diameter of the
annulus is 14 cm and the outer diameter is 22 cm. The separation between the two coils’
inner-most layer is 11 cm and the separation between the outer-most layers is 19 cm. The
coils have a resistance of ⇠0.15 ⌦ and generate a field gradient of ⇠20 G/cm at an operating
current of ⇠20 A. The current is controlled by a control voltage set in Cicero and sent to
the stabilization circuit in Fig. 3.15.

There are also three sets of Helmholtz coils that control the bias magnetic field, composed
of 14 AWG gauge wire. The circuit in Fig. 3.16 controls the coil current powered by Tenma
power supplies. They generate ⇠0.5-G fields at the atoms. The parameters of the coils are
recorded in Tab. 3.1.
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Figure 3.15: MOT coil feedback. An analog voltage controlled by Cicero serves as the control
signal for this feedback circuit.

Coil axis Winding number x width / cm y width / cm z width cm

x 80 38 30 61
y 80 38 30 61
z 120 28 38 15

Table 3.1: Bias coil parameters. For each coil axis, the width along its own axis represents
the distance to the atoms of the center of the coil.
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V+ 
60 V

Figure 3.16: Bias coil feedback. The voltage divider at the beginning increases the tuning
precision.
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The fields and field gradients from each set of coils can be computed at the atoms us-
ing the Biot-Savart law, integrating the current around approximate current paths. It is
straightforward, though tedious, to calculate the integrals by hand and code the formulas
for plotting and prototyping.

3.5 Microwave antenna

A homebuilt Yagi Uda antenna (with one driven element and no directors) drives magnetic
transitions between |2S1/2, F = 1i and |2S1/2, F = 2i within the ground state. The driven
element is partially visible behind the rear window in Fig. 3.12. An Agilent E4422B ESG-A
generates a signal at the ⇠800-MHz hyperfine splitting, which is shuttered by a microwave
switch and amplified by a 10-W microwave amplifier. Taking care to impedance-match to
the antenna improves the coupling e�ciency and microwave Rabi frequency. Optimizing our
impedance was substantially improved by the addition of a small piece of foil that capped
the end of the driving element. Even still, we drive a ⇡ pulse only after ⇠500 µs. While
the emitted polarization is parallel to the driven element, the microwaves reflect and rotate
inside the vacuum chamber at the atoms. Population transfer arguments can help to recover
the fraction of power in each polarization when necessary.

3.6 Imaging

Atom interferometers translate matter-wave phase di↵erences into changes in the number
of atoms in each output port, so interferometers must somehow detect total numbers of
atoms. Absorption and emission of resonant light makes photons a convenient way to detect
cold atoms. Fluorescence imaging drives repeated absorption-emission cycles on a transition
and images the photons emitted into the solid angle subtended by a collection lens. For
a lens with focal length f placed f away from the atoms and a lens of diameter D, the
fraction of photons collected is only ⇠ ⇡(D/2)2/4⇡f 2 ⇡ D

2
/16f 2. Lithium’s ine�cient

cycling transition permits only a couple of photons to be emitted before the atom falls into
a dark state, so fluorescence imaging with a small solid angle is challenging because of the
low signal. Absorption imaging inverts the problem by detecting the number of photons that
get scattered away from the field of view, e↵ectively detecting the photons scattered into a
solid angle 4⇡(1 � D

2
/16f 2). Of course, sending a beam with many photons directly onto

the camera increases the photon shot noise in detection.14

14For readers concerned about photon shot noise, a technique called di↵ractive dark-ground imaging [139,
140] records the shadow but removes most of the illuminating beam’s photons and their shot noise. There
is also a dispersive variant for o↵-resonant probes.
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3.6.1 Absorption imaging

Consider a nearly-resonant beam propagating along z through a gas of atoms. Atoms will
absorb photons from the beam, reducing the intensity from I. The change in intensity dI

should scale as dI / I because the more photons there are, the higher the likelihood one
will get absorbed (assuming the intensity is well below the saturation intensity). The deeper
into the sample the light penetrates dy, the more likely the beam is to have encountered an
absorbing atom, so dI / dy. Finally, the total absorption should scale both with the number
density n of the atoms and the absorption cross section � (which depends on detuning, light
polarization, atomic state, etc. [90]). Altogether, dI = �n�Idy. The solution of this simple
separable equation is the well-known Beer-Lambert law.

I(y) = I0e
�n�y

. (3.1)

Studying the intensity of the light as it passes through a sample provides access to the
number density n, which can be integrated over a volume to find the total number of atoms.
To do so, one needs to know the initial intensity of the light I0 before it encountered the
sample.

Absorption imaging performs this feat by taking two images of the beam on a camera
with pixels imaging the x�z plane. The first is an image of the beam with the atoms present,
Ia(x, z), and the next is an image of the beam without the atoms, Ib(x, z). The atoms cast a
shadow in the first image and the second image calibrates how deep the shadow is. Because
the atoms were absent in the second image, it plays the role of I0 in Eq. (3.1). The light’s
propagation along y projects out that dimension, so each pixel probes the column density
ñ(x, z) =

R
n(x, y, z)dy corresponding to that column in the sample. For example, assuming

a uniform density distribution over a length l along y would give ñ(x, z) = nl. Taking the
ratio of the two images’ intensities (or counts after detection) accesses the column density.

Ia(x, z)

Ib(x, z)
= exp

✓
�
Z

n(x, y, z)�dy

◆
= exp (�ñ(x, z)�) . (3.2)

The column density is15

ñ(x, z) = � ln (Ia(x, z)/Ib(x, z)) /�. (3.3)

The total number of imaged atoms N is just the product of ñ and the area that each
pixel images, summed over an area that contains the full density distribution. Most atom
interferometers detect matter-wave phase di↵erences by summing up the entire density dis-
tribution in this way. For experiments where the total atom number is a critical parameter,

15A camera pixel measures a count of electrons, including dark counts at each pixel. If the number of
counts in the image of atoms is a(x, z), the number of counts in the image without atoms is b(x, z), and
the number of dark counts is c(x, z), then technically the proper ratio to take is not Ia(x, z)/Ib(x, z), but is
(a(x, z)� c(x, z)) / (b(x, z)� c(x, z)). In practice, one may use an average image of the pixel array’s response
in the dark c(x, z) because the dark counts are relatively unchanging.
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CCD

Figure 3.17: Absorption imaging schematic. The cloud absorbs resonant light and casts a
shadow. In an absorption imaging setup like this, the cloud should be at the focal length
of the first lens and the CCD should be at the focal length of the second lens. Because
the shadow is collimated between, it is not critical to place the lens’ focal points together
(though not doing so would confuse the atom number calibration).

it is necessary to properly calibrate the scattering cross section and image magnification.
In interferometer experiments, only changes in the relative atom number are interesting.
The atom number calibration in this experiment not trustworthy because it was never nec-
essary to get accurate atom number counts.16 In the Wollaston imaging scheme described
below, for example, there are two images taken with di↵erent light polarizations for which
the scattering cross section is di↵erent, though we never bother to account for the di↵erence.

Summing the full density profile averages over noise entering each pixel, but it also
averages over di↵erences in the signal at each pixel. Averaging in this way sacrifices any
spatial features the signal may furnish.

We use light tuned to resonance with the |2S1/2, F = 1i ! |2P3/2, F
0 = 0, 1, 2i transition

to image atoms in |2S1/2, F = 1i. We choose to detect this state because we prepare the
ensemble for interferometry by optically pumping into |2S1/2, F = 2,mF = 0i and it is
preferable to detect interferometer signals on a null background using the state to which the
interferometer transfers atoms.

3.6.2 Camera

A PCO pixelfly qe 12-bit charge-coupled device (CCD) camera images the atoms. A Lab-
VIEW program controls the exposure time, triggering, and readout. The exposure time can
be controlled to ⇠5-µs precision, but the camera’s 150-ms readout time dramatically limits
the frame rate. Each single pixel images a 12.6-µm⇥12.6-µm area. We bin the pixels in 2⇥2
squares at the hardware level to improve the noise.

This camera has a problem. Fig. 3.18 shows striations in a dark image that change
unpredictably with every iteration. PCO support suggested that they had seen this issue
before and the resolution was to exchange the ethernet cable that connects the camera to
a PCI card in the computer. The problem remained. PCO o↵ered to test the camera if we

16So if we claim that we trap, say 107 atoms, it should be taken with a grain of salt. More importantly,
our estimates of the atom-shot-noise limit would be relatively inaccurate.
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Figure 3.18: Camera noise. This is a post-processed image of the “column density” (i.e. the
ln of the ratio of two images) in the dark. The lines in the image are di↵erent on every
iteration. The interface is a Matlab GUI was written at Innsbruck that we modified slightly
for our purposes. (06/02/2018, GCs -25989 to -25983 and -25981 to -25974, shown here is
-25974)

sent it to them, but we were unable to take advantage of the kind o↵er. This imaging noise
was likely a major source of noise in the tune-out measurement.

3.6.3 Magnetic gradient imaging

We use images of microwave excitations in the ground-state manifold to calibrate the mag-
netic field strength and its gradient. The magnetic field strength Zeeman-shifts the reso-
nances. If there is a spatial gradient in the field strength, then the Zeeman-shifted transition
frequency also varies spatially. Images of the microwave excitation and its position expose
the spatial variation of the field.

We begin with OP to |2S1/2, F = 2,mF = 0i. Just after, 20 µs of MOT repump fully
depopulates atoms loitering in |2S1/2, F = 1i and prepares a pure |2S1/2, F = 2i state before
applying a microwave pulse. Any atoms subsequently detected in the |2S1/2, F = 1i must
have been transferred by the microwave. Fig. 3.19 depicts the excitation from |F = 2,mF =
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Figure 3.19: Magnetic gradient imaging. The position of a microwave excitation moves as a
function of frequency due to the magnetic field gradient. (08/01/2018, GCs 3360 to 3366)

0i ! |F = 1,m0
F = �1i17 We fit the center of the excitation in the x and z coordinates as a

function of microwave frequency. The slope of each plot, mx and mz, represents the change
in position as a function of change in frequency, mx = �x/�fMW . The quadrature sum of
the slopes gives the full magnitude of the spatial variation.

mr =
p

m2
x +m2

z =

s
�x2 +�z2

�f
2

MW

=
�r

�fMW
. (3.4)

The magnitude of the magnetic gradient in the imaging plane is then

�B

�r
=
�fMW

�r

�B/(mF +m
0
F )

�fMW
=

1

mr

�B

�fMW

1

mF +m
0
F

. (3.5)

We normalize the magnetic field change to the number of Zeeman shifts that contribute to
the transition, which is the sum of the magnetic quantum numbers involved in the transition.
The magnetic field sensitivity �fMW/�B for 7Li’s ground state is roughly 0.7 MHz/G (for a
transition with a single Zeeman shift). The field gradient measured from Fig. 3.19 is about
0.5 G/cm, 2 ms after switching o↵ the MOT’s quadrupole field.

3.6.4 Normalized imaging

Interferometry experiments trace out signals and average down noise by performing many
shots of the experiment at an appreciable repetition rate. The MOT traps an atom number
that fluctuates by roughly 20% from shot to shot. Those number fluctuations would be

17Note that this transition is co-resonant with |F = 2,mF = �1i ! |F = 1,m0
F

= 0i. While this
excitation may conflate those transitions, we do not detect any atoms in mF = ±1 after optical pumping.
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Figure 3.20: Normalized Wollaston imaging. Shuttering two polarizations independently
and separating them before the camera with a Wollaston prism forms two images on a
CCD during a single exposure. The dashed box represents the region where the image of
|2S1/2F = 1i forms. That is the region almost all image data presented in this dissertation
originate from, including images contributing to the tune-out wavelength measurement.

imprinted onto the interferometer signal as noise unless each shot can be normalized to the
number of atoms trapped on that iteration. This requires counting atoms in both output
states each shot. Experiments with state-labeled outputs may push one output o↵ to the side
to simultaneously image spatially-resolved output states. Li’s ine�cient cycling transition
does not impart enough momentum to make this strategy viable. Furthermore, the camera
readout takes 150 ms, after which the lukewarm cloud has thermally expanded and diluted
beyond the field of view. The ability to take two images in rapid succession would solve the
issue, allowing for counting one state and then the other.

A camera hardware technique called “frame transfer” allows multiple images to be taken
during a single exposure without the readout delay. In frame transfer, only a portion of the
array is illuminated. The technique shelves those pixel values by shuttling them into a dark
region of the array before a subsequent illumination. Multiple illuminations can be recorded
during a single exposure. This is a premium feature in expensive cameras and our pixelfly
camera cannot do it.

We devise a new technique inspired by frame transfer to form two images during a single
exposure and normalize the detection (Figs. 3.20 and 3.21). A Wollaston prism inserted just
before the CCD array splits the two orthogonal polarizations at a 16�-angle to one another
with high extinction. Just after beginning a 190-µs exposure18, we illuminate the atoms

18Note that there is a 40-µs pretrigger, so we instruct the camera to expose for 230 µs.
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Figure 3.21: Wollaston imaging switches. The same frequency source drives two cascaded
AOMs. Separate switches independently shutter each polarization for the normalized Wol-
laston imaging scheme. The solid (dashed) line represents the optical path for when the
AOM shutter for the vertically (horizontally) polarized beam is on.

for 90 µs with horizontally polarized light resonant with the |2S1/2, F = 1i ! |2P3/2, F
0i

transition. That detects atoms in |F = 1i. After a 10-µs delay, we illuminate the atoms
with the same frequency of imaging light but orthogonal polarization. We also turn on MOT
cooling light, which depumps atoms from |F = 2i into |F = 1i. The second image therefore
detects atoms in both of the hyperfine ground states simultaenously. The Wollaston prism
sends the two signals to opposite sides of the camera. After the atoms disperse during the
CCD readout of the first exposure, we take a background image with the same pulse protocol
and use the two exposures to calculate the optical density. We sum the atom numbers in
a detection region on each side of the CCD. The normalized excitation is the sum from the
vertically-polarized image divided by the sum from the horizontally-polarized image.

This scheme does not exactly normalize to 1. During the first image, if an atom falls
out of |F = 1i, it stops contributing signal. On average, each atom contributes about 2
signal photons19 before decaying to |F = 2i and becoming dark. During the second image,
however, each atom can contribute more than 2 photons on average because the cooling
light can repump it back into the bright state. Measurements indicate that our detection
normalization factor is 0.45. Throughout the dissertation, we multiply the number this
scheme outputs by a convenient factor of 2 before reporting an axis as a “normalized” PF=1.

The shadow in absorption imaging is collimated between the lenses. The shadow must
come to a focus at the CCD to form an image. The beam tends to be collimated at the
camera in absorption imaging, but that is not strictly required for experiments like ours
in which an accurate count of the atom number is inconsequential. We moved the second
lens closer to the first lens such that the imaging beam slightly converges onto the CCD (as
depicted in Fig. 3.20). Even if the scattering cross sections for the two polarizations were
calibrated, this focusing of the illumination light would worsen the calibration.

19The 2-photon figure is the result of a Monte Carlo simulation with the decay probabilities governed by
Clebsch-Gordan coe�cients.
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3.6.5 Time-of-flight imaging

We may take the liberty to allow the sample to evolve for some amount of time before
exposing an image. The dynamics of the cloud become evident by scanning out this time
of flight tTOF . This accesses two important quantities: the sample’s temperature and its
center-of-mass velocity.

Temperature

Measuring the temperature provides a crucial diagnostic about the experiment and allows
us to tune control parameters in order to optimize it. The thermal speed of each atom
determines the Doppler shift it sees on the Raman beams and sets a requirement for the
bandwidth of the interferometry pulses. E↵orts to lower the temperature relax the bandwidth
requirement, making the pulse transfers more e�cient. Furthermore, the thermal velocities
lead to an important thermal dephasing process that limits the signal-to-noise ratio of the
phase patterning technique. Knowing the thermal distribution helps in modeling the severity
of the problem.

The temperature of the cloud manifests in the Maxwell-Boltzmann distribution of the
atoms’ thermal velocities along each dimension [141]. We will consider a one-dimensional
probability distribution and fit each axis’ temperature independently.

fMB(v) =

r
m

2⇡kBT
exp

�
�mv

2
/2kBT

�
. (3.6)

This is a Gaussian distribution with standard deviation

�v =

r
kBT
m

, (3.7)

where kB is the Boltzmann constant, T is the temperature, and m is the atomic mass.
In spatial coordinates, each atom begins its expansion from position x0. The Gaussian

position probability distribution has some initial width �0.
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�
. (3.8)

We are interested in the final position distribution. The final positions are related to the
velocity, whose distribution we know via Eq. (3.6),

v =
x� x0

tTOF
. (3.9)

To find the final distribution, we must integrate over all the initial positions weighted by the
probability of having started at that position
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Figure 3.22: Time-of-flight thermometry. At long times, the velocity distribution width is
just the linear slope of the gaussian width as a function of time. (07/02/2018, GCs -31963
to -31912)

This is a simple Gaussian integral and its result can be manipulated into the form
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After a time of flight tTOF , the position distribution has a gaussian width

�TOF =
q
�
2

0
+ �2

vt
2

TOF (3.13)

that is related to the temperature.
For short times, one can fit a series of gaussian density distributions from images taken

at varying tTOF with both �0 and �v as free parameters. Alternatively, at long tTOF , the
second term dominates and the width simplifies to �vtTOF . At long tTOF , �v is just the linear
slope of �TOF (tTOF ). We fit these points as in Fig. 3.22 to determine the temperature. The
temperature along z is likely to be underestimated, since the curvature from the initial width
remains quite visible. The 110-µK temperature recorded along x is significantly below the
140-µK Doppler temperature.

This derivation assumes a thermal velocity distribution, so it does not accurately apply to
quantum-degenerate gases. Experiments with Bose-Einstein condensates sometimes perform
thermometry on the thermal portion of the ensemble and assume the BEC is in thermal
equilibrium with it. For deeply low temperatures where there are too few thermal atoms for
fitting, the community must develop new and clever thermometry techniques, e.g. [142].

Velocity

We fit the center of the Gaussian distribution as a function of tTOF to xTOF and zTOF . The
evolution of the center gives the center-of-mass velocity of the sample ⇠1 m/s. This quantity
is critical in the tune-out measurement because the velocity introduces a Doppler shift on
the tune-out beam. The Doppler shift is large enough to introduce a substantial systematic
shift. Time-of-flight imaging can only measure the velocity in the plane perpendicular to the
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Figure 3.23: Time-of-flight velocimetry. The center-of-mass velocity is the slope of the
position as a function of time of flight. (07/30/2018, GCs -4606 to -4563)

imaging beam, so calibrating the Doppler shift the atoms see on the tune-out beam requires
a di↵erent method. Measuring the velocity in time-of-flight images nevertheless helps to
calibrate the systematic.

3.7 Optical pumping

The varying magnetic-field dependence of the Zeeman sublevels’ energies is a nuisance at
best. Preparing atoms in an mF = 0 state helps to alleviate a constellation of related
issues. Atom interferometer experiments prepare mF = 0 states for interferometry using
a variety of methods. For example, one might optically pump atoms to an extremal mF

(“stretched state”) using a closed MOT cooling transition and perform a series of well-
resolved, high-e�ciency microwave transfers [91]. We cannot a↵ord this approach, due to
lithium’s leaky cycling transition and our sluggish microwave Rabi frequency compared to
the thermal expansion rate.

3.7.1 Optical pumping light

We can take advantage of a dipole selection rule that prohibits transitions with F
0 = F for

mF = m
0
F = 0. We cannot pump e�ciently on any such transition for |2S1/2, F i ! |2P3/2, F

0i
because of the lack of resolution on theD2 line. Transitions to nearby F 0 6= F formF = m

0
F =

0 would be ubiquitous. The |2S1/2, F i ! |2P1/2, F
0i transitions o↵er much better resolution,

15 times the linewidth. Of course, atoms may decay to the wrong hyperfine ground state after
excitation, so the process requires repumping. One could perform this pumping on either
the |2S1/2, F = 1i ! |2P1/2, F

0 = 1i transition or the |2S1/2, F = 2i ! |2P1/2, F
0 = 2i. Since

there are more states in |F = 2i to which atoms can leak from |F = 1i, repumping for the
|2S1/2, F = 2i ! |2P1/2, F

0 = 2i option is more e�cient. We repump atoms decaying into
|F = 1i with MOT repump light.

We frequency o↵set lock a homebuilt ECDL near the |2S1/2, F = 2i ! |2P1/2, F
0 = 2i

transition. In an early design, we had a single optical isolator providing about 40 dB of
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Figure 3.24: Optical pumping levels. Light tuned to the |2S1/2, F = 2i ! |2P1/2,F = 2i
transition pumps atoms to the |2S1/2, F = 2,mF = 0i state, darkened by a forbidden optical
dipole transition.

isolation (Thorlabs IO-5-670-HP). The light couples into an optical fiber between the laser
and the vacuum chamber, but reflections from the fiber port injected feedback into the laser
despite the isolator. It was crucial to insert a second 40-dB isolator before the fiber port to
achieve stability.

After the optical fiber, an 80-MHz AOM shutters optical pumping light. It passes through
a polarizing beam splitter to purify the polarization and enters the vacuum chamber roughly
coaxially with MOT arm 5 (see Fig. 3.11 and [114]). Propagating in the x � y plane, its
polarization is along the z axis. If the pumping beam propagates only in one direction, it
biases the momentum transfer of pumping photons along that direction. For symmetry and
to increase the scattering rate, a mirror retroreflects the beam back into the chamber for a
second, counter-propagating the interaction.

The z axis is defined by the direction of the magnetic field, described below, so there may
be a small angle between the polarization and the field. Only after the MOT quadrupole
field decays can the bias coils establish a homogeneous, uniform magnetic field such that the
light can be ⇡ polarized parallel to the field.

3.7.2 Magnetic field for optical pumping

Conceptually, the mF = 0 state is one whose magnetic moment points perpendicular to the
magnetic field. The MOT pumps atoms into a stretched state, which means the spins align
parallel to the magnetic field (or anti-parallel depending on the g factor). Because the field
points in di↵erent directions at di↵erent spots in the quadrupole field, the spins also point
in di↵erent directions. Consider Fig. 3.4. The directions of the arrows on axis indicate the
direction of the stretched-state spin vector. The field points in di↵erent directions so the
spins point in di↵erent directions. To prepare a pure mF = 0 state, all the spins must point
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Figure 3.25: Magnetic field gradient decay. The magnetic field gradient decays with a time
constant of roughly 1.5 ms. (11/08/2017)

in the same direction and they must be perpendicular to the field.
The spatially-varying MOT field makes pumping to mF = 0 very di�cult since the field

varies spatially. We must switch o↵ the anti-Helmholtz coils and wait for the gradients
from the quadrupole field to decay well below the magnitude of the bias field divided by
the size of the cloud. Only then can we establish very purely ⇡-polarized light to minimize
any circularly-polarized transitions that pollute the pumping process. The current in the
quadrupole coils decays after only 250 µs, but eddy currents in the steel vacuum chamber
invigorate the gradients for much longer. We measure the field gradient in situ using the
magnetic gradient imaging method at varying times of flight after current shuto↵.20 As Fig.
3.26 shows, the gradient decays with a ⌧B =1.5-ms time constant, far longer than the coil
current.

3.7.3 Molasses and launch

The field gradient decays to 0.5 G/cm after 2 ms. That is a substantial amount of time for
the rapidly thermally expanding cloud. To limit the ballistic expansion of the cloud during
that time, we leave on the MOT cooling and repump light after switching o↵ the quadrupole
field coils. This tactic, in principle, would just create an optical molasses without a restoring
force for trapping [42]. The molasses limits expansion more e↵ectively than anticipated, due
to the fact that it is not simply a molasses.

The Helmholtz coils turn on well before the anti-Helmholtz coils switch o↵, which is
required due to the switching speed limitation imposed by the large inductance of the bias
coils. In the presence of the strong quadrupole field during the MOT stage, the small bias
field is of little import. While the quadrupole field decays, on the other hand, its strength
begins to diminish with respect to the bias field. The quadrupole field gradient decays from
some strength (dB/dz)0 ⇠20 G/cm proportionally to exp(�tTOF/⌧B) as in Fig. 3.26. The

20Note that the microwave pulse takes 500 µs, which is a substantial fraction of the times of flight. The
measured gradient is therefore some gradient integrated over the 500-µs pulse period just after tTOF . This
helps explain why the initial gradient measured in this way is far smaller than the ⇠20 G/cm we expect for
the MOT gradient.
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Figure 3.26: Transfer probability for a microwave pulse. A microwave resonant with the
ground-state |F = 2,mF = 0i ! |F = 1,mF = 0i transition transfers atoms from |F =
2,mF = 0i into the detected |F = 1i state with a ⇡ pulse duration of ⇠450 µs. (08/01/3018,
GCs 3155 to 3187)

fixed coils place the center at a fixed position we label the origin. Denoting the bias field as
Bb, the total field is

B(z, tTOF ) =

✓
dB

dz

◆

0

z exp (�tTOF/⌧B) + Bb. (3.14)

The position z0 where the total field is 0 evolves exponentially in time.

z0(tTOF ) = �
✓
dB

dz

◆�1

0

exp (tTOF/⌧B)Bb (3.15)

The sample cannot follow this moving MOT position indefinitely. The finite photon scat-
tering rate from the MOT beam propagating along the direction of the launch eventually
becomes insu�cient to transfer enough momentum to keep up. The sample quickly reaches
a terminal velocity ⇠1 m/s and z0 runs away from it.

3.7.4 Microwave spectrum

Optical pumping takes place after the quadrupole field decays and the field is homogeneous
across the sample. The ⇠4-mW OP beam pumps the atoms with a 1/e2-intensity waist of
⇠4 mm. To probe the optical pumping e�ciency, we scan the microwave frequency to resolve
each transition. The |F = 2,mF = 0i ! |F = 1,mF = 0i microwave transition is strongest
when the pumping e�ciency is maximal. We tune the control parameters for the three axes
of Helmholtz coils to maximize the pumping e�ciency.

The spectrum reveals the magnitude of the bias field. A microwave transition involving
one singly-Zeeman-shifted level (e.g. mF = 0 ! m

0
F = 1) is 700 kHz per 1 G field in the

7Li ground state. The zero-field resonance is 803.504 MHz, so the peak centers in Fig. 3.27
indicate that the bias field is ⇠1.3 G. The Earth’s magnetic field is about 0.5 G in Berkeley
and runs roughly North and down, so we choose to orient the field Northward so the Earth’s



CHAPTER 3. EXPERIMENTAL TOOLS 100

803.508 803.512 803.516
0

0.2

0.4

0.6

0.8

microwave frequency / MHz

P F
=1

804.35 804.45 804.55
0

0.05

0.1

0.15

0.2

0.25

802.5 802.6 802.7
0

0.05

0.1

0.15

0.2

0.25

801.5 801.6 801.7 801.8 801.9

0.002

0.006

0.01

0.014

0.018

805.1 805.2 805.3 805.4 805.5 805.6

0.002

0.006

0.01

0.014

0.018

800.6 800.8 8010

0.04

0.08

0.12

806 806.2 806.4 806.60

0.04

0.08

0.12

0 → 0

0 → -1
     &
-1 → 0

0 → +1
     &
+1 → 0

-1 → -1 +1 → +1

-2 → -1 +2 → +1

Figure 3.27: Microwave spectra with and without optical pumping. Black circles (red aster-
isks) indicate pulse transfers with (without) optical pumping with a 500-µs pulse. Labels
specify mF ! m

0
F for |F = 2,mF i ! |F = 1,m0

F i. (08/01/3018, GCs 2992 to 6409)



CHAPTER 3. EXPERIMENTAL TOOLS 101

field adds to the field from the bias coils.21 Otherwise, much of the coils’ limit would be
dedicated to first cancelling Earth’s field before generating a non-zero bias contribution in
the opposite direction.

Zeeman population estimates

It is important to obtain rough estimates the populations in each of the Zeeman sublevels
after optical pumping. No atoms appear in |2S1/2, F = 1i due to the strong MOT repump
that is on during optical pumping.

The mF = 0 ! 0 resonance is only slightly broadened by the quadratic Zeeman gradient,
so we assume that the peak height of the 0 ! 0 resonance represents the full population in
mF = 0: 80%.22

The mF = ±1 ! ±1 peaks do not register any signal beyond imaging noise after optical
pumping. That absence is not due to a lack of ⇡ polarization in the microwave field because
the mF = 0 ! 0 resonance is healthy. We therefore assume that no population in the
mF = ±1 states survives optical pumping.

That assumption allows us to estimate the polarization using the mF = 0 ! 0, 0 !
+1, 0 ! �1 resonances. Each resonance originates from the same population, so the rel-
ative peak heights in the �+ and �� transitions give the ratio of microwave power in each
polarization. The 0 ! +1 peak is 3/4 as high as the 0 ! �1 peak, so the ratio of powers in
the circular polarizations is I+ = (3/4)I�.

With 80% in mF = 0 and no population in the mF = ±1 states, the remaining 20%
is distributed among mF = ±2: P+2 + P�2 = 0.2. The power ratio multiplies the relative
peak heights of the +2 ! +1 and �2 ! �1 transitions. The peak height (A) ratio is
equal to the ratio of populations multiplied by the fraction of microwave power driving
each transition: A+2!+1/A�2!�1 = P+2I

�
/P�2I

+, so P+2/P�2 = A+2!+1I
+
/A�2!�1I

� =
(3/4)A+2!+1/A�2!�1 ⇡ (3/4)0.022/0.06 = 0.275. Through (1 + .275)P�2 = 0.2, this yields
populations of P�2 = 0.16 and P+2 = 0.04.

After optical pumping, the fractional populations in the mF sublevels of |2S1/2, F = 2i
21Though Earth’s field reported by NOAA has an equal component downward towards the ground, we do

not use the y axis coils for the tune-out measurement. Our earlier projects did energize those coils, but we
believe the installation of of the LIAD LED at the 2D MOT in late 2017 modified the local field to cancel
Earth’s vertical component. Let this be a warning that adding new components can substantially change
local fields.

22The peak height is admittedly closer to 70% in Fig. 3.27. That is because I multiply detected populations
by a convenient factor of 2 to get a number that is close to properly normalized given the Wollaston imaging
technique. A more accurate factor to use throughout the dissertation would have been 2.2. The more
accurate factor yields a population of 80% in mF = 0.
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Figure 3.28: Raman and cold-atom spectroscopy (CAS)-z beam path to sample.

are

PmF=0 = 0.80(2) (3.16)

PmF=�1 = PmF=+1 = 0.00(2) (3.17)

PmF=�2 = 0.16(2) (3.18)

PmF=+2 = 0.04(2), (3.19)

where the uncertainties come from imaging noise and peak height estimations.
In considerations like those above, one should only compare peak heights for transitions

with the same number of total Zeeman shifts since they are broadened by the gradient sim-
ilarly. Comparing peak heights across transitions of di↵erent total number of Zeeman shifts
would require accounting for di↵erent suppression factors that describe how the gradient
broadens each peak and reduces its height.

3.8 Raman beams

Fig. 3.28 shows how the Raman beams enter the sample along the North-South axis, tilted
by ⇠4� with respect to z in the imaging plane. They have orthogonal linear polarizations.

3.8.1 Raman frequency generation and modulation fm

The splitting between the Raman frequencies must match the 803-MHz hyperfine splitting
in the ground state. The unbalanced intensities of the Raman beams introduce a di↵erential
AC Stark shift between the levels, so the most e�cient pulse transfer occurs on the Stark-
shifted resonance about 1 MHz away from the bare resonance. For the recoil project with
a Ramsey-Bordé interferometer phase that depends on the detuning from bare resonance,
we are forced to tune the splitting near the bare resonance as opposed to the Stark-shifted
resonance. That reduced the pulse transfer e�ciency for that project.

The 2D MOT slave laser, injection-locked to the master laser, injection locks the Raman
slave laser. Two cascaded 400-MHz AOMs (IntraAction ATM-4001A1) shift a portion of the
optical power up and down in frequency (see Fig. 3.29). Since the slave laser locks near the
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Figure 3.30: Raman frequency generation.

cross-over resonance 400 MHz between the |2S1/2, F = 1i ! |2P3/2, F
0i and |2S1/2, F = 2i !

|2P3/2, F
0i transitions, these 400-MHz AOMs would shift the two frequencies onto resonance.

To introduce an appreciable single-photon detuning to drive ground-state Raman transitions,
a continuously operating 210-MHz AOM shifts the optical frequency downward before the
cascaded 400-MHz AOMs. A TA also amplifies the optical power before it arrives at the
cascaded 400-MHz AOMs. Roughly 180 mW enter the setup in Fig. 3.29 via an optical
fiber.

A Novatech DDS9m direct digital synthesizer (DDS) provides the frequencies that drive
the 400-MHz AOMs (see Fig. 3.30). Its four channels step with terrific 0.1-Hz precision, but
each can only reach a maximum of 171 MHz. We first double one channel at F2 = 125 MHz
to generate 250 MHz. The 250-MHz signal mixes with one of two other channels as selected
by a microwave switch. Those two channels operate near F0=151.75 MHz so that twice the
drive frequency matches the 803.5-MHz ground-state hyperfine splitting. We operate those
two channels at slightly di↵erent frequencies in order to introduce a frequency hop on the
AOMs. The second of four interferometer pulses triggers a latch that switches which channel
mixes with the 250-MHz tone. That introduces a modulation frequency fm onto the final
two pulses of a four-pulse sequence (F1 = F0 + fm) that we use to tune the phase of the
interferometer.

The two Raman frequencies must arrive at the atoms simultaneously to drive a transition.
When a microwave switch passes the 400-MHz tone to an amplifier that drives the AOMs, a
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Figure 3.31: Temporally overlapped Raman pulse. Two photodetectors sense each of the
Raman beams after they pass through the chamber. Mounting one of the 400-MHz AOMs
on a translation stage permits temporal overlap. (07/28/2017)
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Figure 3.32: Raman pulse transfer probability. The dephasing is worse than Fig. 2.9, likely
due to the intensity profile of the beam. (07/17/2018 GCs -32025 to -31842)

sound wave begins propagating through the tellurium dioxide crystal from the piezoelectric
transducer. The speed of sound in tellurium dioxide is about 4 km/s. If the beams enter each
of the AOMs at a di↵erent distance to the piezoelectric transducer, it will take a di↵erent
amount of time for the sound wave to reach the beam and shutter it. To match the shutter
time, it is crucial to place one of the AOMs on a translation stage and tune it so that
the two Raman beams shutter simultaneously. A bare, reverse-biased photodiode (Thorlabs
FDS010) detects each Raman beam after it has passed through the chamber. Each signal
drops across a terminator at an oscilloscope. We tune the translation stage to overlap the
leading edge of the two pulse traces (see Fig. 3.31).

3.8.2 Fast pulses

Each atom in the thermal distribution sees a di↵erent Doppler shift on each of the Raman
beams. Because the beams propagate along opposite directions and drive velocity-sensitive
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voltage in the o↵ state than the MOSFET.

Raman transitions, an atom moving towards one beam at velocity v sees it shifted to the
blue and the opposite beam shifted to the red. So the total Doppler shift on the two-photon
transition is ⇠ 2v/(671 nm). The velocity width 2�v sets the range of Doppler shifts for
the ⇠140 µK sample, 4�v/(671 nm)=2.4 MHz. The Raman pulses must span this spectral
bandwidth to address the entire sample.

We use a fast beam splitter pulse with ⌧ =160 ns that o↵ers a Fourier-limited bandwidth
1/2⇡⌧ ⇠ 1 MHz. Roughly 30 mW of light 200 MHz below the |2S1/2, F = 2i ! |2P3/2, F

0i
transition and 15 mW of light 200 MHz below the |2S1/2, F = 1i ! |2P3/2, F

0i transition
arrive at the atoms. The beams have a 1/e2 gaussian intensity waist of 3.6 mm. They
follow a lin-?-lin scheme where one is polarized roughly along x and the other along y. The
propagate close to the z axis, tilted with respect to it by 4�. Scanning the pulse duration ⌧
produces Rabi flopping (Fig. 3.32) that decoheres due to the varying Rabi frequency across
the ensemble (due to the intensity profile of the beams and the Doppler width of the thermal
sample).

3.8.3 Raman switching

The rapid Raman transition demands rapid pulse shuttering. Cicero’s 10-µs resolution is
insu�cient, so a Cicero pulse triggers a SRS DG645 digital delay/pulse generator that drives
the pulse sequences for interferometry.

Furthermore, a Ramsey-Bordé interferometer requires that the momentum transfer for
the third and fourth pulses is opposite to the momentum transfer of the first and second
pulses. The direction of the Raman vectors must reverse between the second and third pulses.
Each Raman frequency launches towards the atoms out of an optical fiber from either side
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Figure 3.34: Latching switch. The second of four Ramsey-Bordé pulses is teed o↵ and input
into the CLK input. The output of the positive-edge-triggered flip-flop is slightly delayed
by a low-pass filter and inverted to control the MOSFET in the vacuum tube switch. This
circuit also controls the DDS’ switching between F0 and F1 for Raman frequency generation.

of the optical table. To switch the direction, the fiber from which each frequency launches
must reverse. We insert an EOM before a PBS that splits the polarization-labeled Raman
frequencies into one fiber or the other. Switching the voltage on the EOM to its “half-wave”
voltage turns it into a �/2 wave plate (see Fig. 3.29).

The half-wave voltage may be identified by polarizing a beam that transmits through a
polarizer, inserting the EOM, and tuning its DC voltage until the polarizer extinguishes the
beam. For our EOM, this voltage is near 214 V. A standard MOSFET does not typically o↵er
a su�ciently high drain-source voltage, but vacuum tubes do. Fig. 3.33 shows the circuit
that rapidly switches the high voltage on the EOM. A MOSFET acts as a voltage-controlled
switch, while a vacuum tube (here a 6922) handles the high voltage. For an ⇠100-pF EOM
capacitance and a 18-k⌦ load resistor, the switch operates much faster than 2 µs.

Fig. 3.34 illustrates the trigger that drives the MOSFET in Fig. 3.33. A tee samples
the second of four interferometry pulses from the SRS DG645, which drives a positive-edge-
triggered flip flop that latches the logic state driving the MOSFET. A second trigger of the
pulse sequence resets the latch at the end of each experimental shot, after the atoms have
diluted for the background absorption imaging exposure.

This latch circuit also drives the microwave switch that determines which DDS frequency
mixes into the Raman frequencies, adding fm to the third and fourth pulses in the tune-out
measurement.

3.9 Tune-out setup

The beam measuring the tune-out wavelength originates from the path in Fig. 3.35. The
reference light for the optical beat note phase lock comes from the Raman slave laser. It is
the undi↵racted light in the 210-MHz AOM that generates the single-photon detuning for
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the Raman transitions, so this reference light is locked to the |2S1/2i ! |2P3/2i crossover
resonance.

The tune-out measurement requires the Stark-shifting light to propagate as parallel to
the imaging axis as possible, here o↵set by ⇠5�. Fig. 3.36 illustrates the beam path for
measuring the tune-out wavelength. The beam enters an anamorphic prism pair (Thorlabs
PS883-A) that elongates the beam to an aspect ratio of 4 before it encounters the 500-mm
achromatic lens that focuses the beam onto the sample. The elongated axis is the vertical
axis perpendicular to the optical table.23 The lens focuses the elongated (non-elongated)
axis with a higher (lower) numerical aperture to a size of ⇠150 µm (⇠600 µm) at the atomic
sample. Two motorized wave plates, one �/2 and one �/4, control the polarization of the
Stark-shifting beam. We also perform CAS-TO spectroscopy along the y axis. Fig. 3.28
shows how the CAS-z beam enters the sample along the North-South axis tilted by ⇠2�. Its
polarization is very nearly along x.

23Fig. 3.36 shows the anamorphic prism pair elongating the beam along the axis parallel to the table.
That is an artistic liberty taken for the purposes of the diagram. The beam is truly elongated along the axis
perpendicular to the table.
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Parameter Value

Sample temperature ⇠140 µK
Thermal speeds ⇠1/2 m/s
Magnetic field for optical pumping and interferometry 1.3 G
Microwave ⇡ pulse time 450 µs
Optical pumping beam waist 4 mm
Optical pumping power 4 mW
Raman beam waist (1/e2 intensity) 3.6 mm
!1, !2(< !1) Raman beam powers 15, 30 mW
Raman single-photon detuning -2⇡⇥ 210 MHz
Raman ⇡/2 pulse time 160 ns
Stark (tune out) x, z beam waists (1/e2 intensity) 600, 150 µm
Stark (tune out) beam power 3 mW
CAS-z beam waist (1/e2 intensity) 1.5 mm
CAS-z beam power 0.4 mW
Interferometer contrast 10%

Table 3.2: Experimental parameters.

3.10 Collected relevant parameters

This section houses Table 3.2, a quick lookup of some of the experimental parameters of
most interest to readers.
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Chapter 4

Sensing atomic recoil above the
temperature

Atom interferometry has produced one of the preferred methods for measuring the fine-
structure constant ↵fsc. Previous measurements have required that the samples entering the
interferometer have kinetic energy distributions below the recoil temperature. Achieving such
narrow velocity distributions is nontrivial, lossy, and only works very well for a small handful
of atomic species. Here, we demonstrate and describe a technique that allows measuring the
fine-structure constant without requiring sub-recoil temperatures [143].

Developing interferometry techniques that work at high temperatures would open up
new candidates for interferometry, like electrons. Since lithium is also di�cult to cool, it
volunteers a testbed for proving out such techniques. While lithium does not o↵er quite as
high of a recoil frequency as an electron, its 2⇡⇥63-kHz recoil is still substantially larger
than that of Cs. In this chapter, we focus on extending recoil interferometry to higher
temperatures.

4.1 Prior techniques

Two di↵erent atom interferometry techniques have produced terrific measurements of ↵fsc.
The first is based on simultaneous conjugate Ramsey-Bordé interferometers. A single

Ramsey-Bordé (Fig. 2.16) establishes a kinetic energy di↵erence between the upper and
lower arms by only allowing the upper arm of the interferometer to spend time with the
excess kinetic energy of photon recoil. Integrating a substantial phase requires increasing
the pulse separation time T and the baseline along which the arms separate, so having
the long baseline of an atomic fountain improves the measurement precision. Doing so
on Earth’s surface where most labs are currently located1 also subjects the atoms to the
local gravitational acceleration. The 2kgT (T + T

0) phase accrued as a result confounds the

1NASA’s Cold Atom Laboratory announced that it had successfully cooled atoms on the International
Space Station in 2018.
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Figure 4.1: Accelerated four-pulse Mach-Zehnder interferometer. This interferometer mea-
sured the fine-structure constant to 0.62 ppb [73].

measurement of the atoms’ recoil frequency. Running two interferometers simultaneously as
in Fig. 2.18 produces two signals that depend on the recoil with opposite sign but gravity
with the same sign. By subtracting the two simultaneous conjugate interferometers’ phases,
the gravity term cancels and only the recoil term remains. This requires independently
measuring the two interferometers’ phases by independently detecting all four interfering
outputs. Detecting each output separately demands a sample whose velocity spread is much
smaller than the velocity with which the arms separate. In other words, the velocity spread
needs to be “sub-recoil”. Warm samples like our lithium sample do not satisfy this criterion.
Our sample’s thermal speeds are nearly 10 times higher than the recoil speed. Nevertheless,
this technique achieved a 0.20-ppb precision on ↵fsc using a sub-recoil sample of 133Cs.

A di↵erent technique does not require two simultaneous interferometers. In contrast to
the previous measurement, it uses Raman transitions as beam splitters. That labels the
outputs according to the internal atomic state, so state-specific detection obviates the need
for spatially resolving the outputs that set the cooling demands above. The interferometer
scheme is based on a four-pulse Mach-Zehnder like Fig. 2.19. That interferometer has no
recoil phase because each arm spends the same time recoiling with the same energy. We
must recognize that it is not the di↵erence in speed between the arms that determines the
phase, but the di↵erence in energy. Because the energy of an arm scales with the square of
the number of photon momenta it has absorbed, it still is possible to achieve a large kinetic
energy di↵erence between two arms distinguished by only two photon momenta provided
that each is biased to a large o↵set speed. Accelerating two arms of an interferometer using
Bloch oscillations in a swept optical lattice as in Fig. 4.1 produces this bias in speeds [144].
After NBO photon momenta transferred from Bloch oscillations during T

0, the final T boasts
an upper arm recoiling with NBO photon momenta and a lower arm recoiling with NBO + 2
photon momenta. The di↵erence in kinetic energy between the states is ~(4NBO + 2)!r,
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which accrues phase over T .2 Despite o↵ering state-labeled outputs, this technique requires
a sample cold enough to e�ciently undergo Bloch oscillations for coherent acceleration. Thus,
it is also not suitable for warm samples. Nevertheless, this technique achieved a 0.62-ppb
precision on ↵fsc using a sub-recoil sample of 87Rb [73].

4.2 Beating fringes

A lukewarm sample of 300-µK 7Li demands a new toolkit for recoil interferometry. The
thermal speeds are much larger than the recoil speed, so spatially-resolved detection is im-
possible. One could filter the velocity of the sample using a long velocity-selective Raman
transition with a sub-recoil Fourier-limited bandwidth, but that would sacrifice any signal
from the majority of the sample whose thermal speeds and Doppler shifts preclude satisfying
the resonance condition. We instead use the entire sample, addressing it with short, high-
bandwidth Raman pulses that cover the Doppler spread (see Figs. 2.8 and 2.9 for theory
and Fig. 3.32 for data).

Covering the Doppler spread with high-bandwidth pulses also fails to resolve the di↵erent
Doppler-shifted resonances of the transitions involved in each of the conjugate Ramsey-Bordé
interferometers (see Fig. 2.17). Therefore, these high-bandwidth pulses drive each of the
conjugate interferometers in Fig. 2.18 simultaneously and unavoidably. Sub-recoil samples
do discriminate between those Doppler shifts, so driving each transition historically required
intentionally modulating the beam splitter frequencies to address them [124, 72].

The presence of both simultaneous conjugate interferometers and the lack of spatial
resolution produces two overlapped signals, one from each interferometer. Summing the
output probabilities of Fig. 2.18 like in Eq. (2.192):

PSCRBb = |cb1|2 + |cb2 + cb3|2 + |cb4|2 + |cb5|2 + |cb6 + cb7|2 + |cb8|2, (4.1)

producing two separate interference terms that add. We assign a contrast to each of the
interferometers, C+ for the upper, conjugate interferometer and C� for the conventional
interferometer. The two interferometers have phase di↵erences ��± = ±8!rT �2�T .3 With
a background population of B, the interferometer signal becomes

sSCRB = B � C+

2
cos(8!rT � 2�T )� C�

2
cos(�8!rT � 2�T ). (4.2)

We neglect the acceleration phase here since we operate the interferometer perpendicular to
gravity. The two interferometers’ contrasts are roughly equal C+ ⇡ C� ⌘ C± because the

2The total phase di↵erence 4NBO!rT is less by the 2!rT phase accrued by the upper arm during the
first T .

3The sign on � has suddenly reversed with respect to what appears in Eqs. (2.225) and (2.241). Those
previous derivations assumed the interferometer starts in the lower-energy hyperfine state |ai and recoils into
the higher-energy state |bi (as is canonical). In the interferometry results henceforth in this dissertation, we
optically pump to |bi = |2S1/2, F = 2i, which recoils into |ai = |2S1/2, F = 1i. The roles of !1 and !2, as
well as !a and !b are all reversed under this state reversal. That flips the sign that appears in front of �.
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Figure 4.2: Beating fringes for !1 � !2 = 2⇡ ⇥ 803.518 MHz. (08/29/2016 GCs 25205 to
30726)

di↵erence in resonant Doppler shifts involved in each interferometer is well within the pulse
bandwidth. Then,

sSCRB = B � 1

2
C± (cos(8!rT � 2�T ) + cos(�8!rT � 2�T )) . (4.3)

The sum of cosines adheres to cos(a+ b) + cos(a� b) = 2 cos(a) cos(b).

sSCRB = B � C± cos(8!rT ) cos(2�T ). (4.4)

The overlapped signals from the simultaneous conjugate interferometers advance at di↵er-
ent phase rates for nonzero two-photon detuning �. Recall that the detuning this references
is the di↵erence between the laser frequency di↵erence and the hyperfine splitting with the
light o↵. The latter includes any Zeeman shifts that accompany local magnetic fields. For
nonzero �, the two signals beat.

Fig. 4.2 shows beating fringes for a laser frequency di↵erence of !1 � !2 = 2⇡ ⇥ 803.518
MHz. We tune the laser frequency di↵erence by tuning the frequency of a DDS channel that
produces the Raman splitting.4 There is a slow modulation of the fringe amplitude from the
cos(2�T ) term that multiplies the fast cos(8!rT ) fringes. The roughly 3 full rotations of the

4There are two channels involved. One parks at 125 MHz and doubles to 250 MHz. The other
(“rf1”⇡151.755 MHz) mixes against the 250-MHz tone to produce 410.755 MHz. This frequency drives
two AOMs. One AOM increases a Raman beam’s frequency to !1 and the other AOM decreases the other
Raman beam’s frequency to !2. The di↵erence between the two beams is twice that of either single AOM’s
frequency: ⇡ 803.510 MHz.
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!1 � !2 / 2⇡ MHz !r / 2⇡ kHz decay time / µs

803.500 63.1611(37) 252(12)
803.502 63.1654(45) 245(13)
803.504 63.1609(32) 281(12)
803.506 63.1600(28) 277(11)
803.508 63.1648(19) 297.5(8.3)
803.510 63.1610(43) 248(14)
803.512 63.137(18) 260(260)
803.514 63.1661(27) 314(13)
803.516 63.1262(38) 228(10)
803.518 63.1629(23) 234.5(6.4)
803.520 63.1664(49) 261(17)

Table 4.1: Fit parameters from beating fringes. The parenthesis specify the 1-� fit uncer-
tainty on each parameter.

amplitude oscillation in 270 µs implies that � ⇡ 2⇡ 5.5 kHz, though the sign is not imme-
diately obvious. We know from the microwave spectra (Fig. 3.27)5 that the quadratically-
Zeeman-shifted resonance between |2S1/2, F = 2,mF = 0i and |2S1/2, F = 1,mF = 0i is
about 803.5125 MHz. That resonance is 5.5 MHz from the laser frequency di↵erence, just
as we would expect.

The separation of time scales between a small 2� and a comparatively large 8!r isolates
the recoil frequency as the sole contributor to the fast oscillations. We may fit the fringes to
determine !r. In addition to the contrast, �, !r, and background population as they appear
in Eq. (4.4), we also include a decay term on the fringe amplitude. Due to the high number
of fit parameters and the nonlinear fit function, faithfully fitting the fringes requires a careful
choice of seed parameters.

Fig. 4.3 shows beating fringes for a range of �, each with its own fit.6 At the time, the
thermal fluctuations in the position of the sample were rather dramatic (prior to installing
the curtains in Fig. 5.9 for the tune-out measurement). The drifting position led to a drifting
pulse transfer e�ciency. Unique contrasts and background populations for each scan are the
combined result of those thermal e↵ects and a newly tuned ⇡/2 pulse time for each scan.
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4.2.1 Recoil frequency

The most interesting parameters from the fits in Fig. 4.3, collected in Tab. 4.1, are the recoil
frequency !r and the 1/e contrast decay time constant. The weighted average of the fits to
the recoil frequency gives 2⇡⇥ 63.161(1) kHz. While we did not precisely measure the wave
number of the light, we do know it far better than the statistical uncertainty on that fit, to
20 MHz easily. The wavelength of the Raman light tuned 200 MHz below the D2 crossover
resonance is � = c/(446810090(20) MHz)=670.96171(3) nm. Given ~/m = !r�

2
/2⇡2, we

achieve
~
m

= 9.0510⇥ 10�9 m2
/s, (4.5)

with a statistical uncertainty given by

d

✓
~
m

◆

stat

=

s✓
@(~/m)

@!r

◆2

d!2
r +

✓
@(~/m)

@�

◆2

d�2 (4.6)

=

r
(670.96171 nm)4

⇡2
(1 Hz)2 +

4(63.161 kHz)2(670.96171 nm)2

⇡2
(30 fm)2 (4.7)

= 1.4⇥ 10�13 m2
/s. (4.8)

Thus,
↵fsc = 0.00729699(6)stat. (4.9)

The reported error is purely statistical because we have made no e↵ort to restrain, control,
or estimate systematic e↵ects. Without such e↵orts, we emphasize that this should not be
construed as a measurement at all. Note that it is a mere 7-� away from the bona fide
measurement in Ref. [72].

This precision could be improved by taking the data di↵erently. We recorded much of
the data at low T where the precision is low, preferring to demonstrate the features of the
beating fringe technique. An attempt focused on precision would specify to long T where
the phase accrued is high. In addition to other systematics, one would need to consider the
o↵set phase from finite pulse e↵ects, as well as the 0 or ⇡ phase introduced depending on
whether the cos(2�T ) term is in a peak or a trough.

4.2.2 Contrast decay

The weighted average of the contrast decay time constant is 260(3) µs. Atoms transit through
the beam at thermal speeds vth ⇠0.5 m/s for a total time 2T (neglecting T

0 = 10 µs ⌧ T ).

5Note that the experimental parameters were slightly di↵erent in 2018 when we obtained that spectrum,
compared to 2016 when we took these beating fringes. They are very similar though.

6I was only able to identify the GCs for half the data sets: (803.500 MHz – 08/25/2016 GCs -19963
to -14565); (803.502 MHz – 08/25/2016 GCs -8487 to -3078); (803.504 MHz – 08/25/2016 GCs -2962 to
2565); (803.516 MHz – 08/29/2016 GCs 15661 to 21069); (803.518 MHz – 08/29/2016 GCs 25205 to 30726);
(803.520 MHz – 08/29/2016 GCs -31686 to -26787)
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Figure 4.4: Magnetic gradient dephasing.

For contrast decay limited by thermal excursions out of the interferometry beam, we should
expect to see contrasts out to T =(3.6 mm)/2vth = 3.6 ms. That limit is ten times longer
than the contrast decay we observe, so another decoherence mechanism must be at play.

We optically pump the atoms to a magnetically-insensitivemF = 0 state in order to avoid
dephasing from di↵erent Zeeman sublevels. Each Zeeman sublevel would have a di↵erent
internal energy splitting due to the Zeeman shift, so each would accrue a di↵erent 2�T phase.
While the mF = 0 state is insensitive to magnetic fields, it is not immune. Furthermore, a
nonzero gradient in the magnetic field persists in spite of our attempt to let it decay. The
gradient is ⇠ 1 G/cm after 1.5 ms of molasses time. The bias field is around 1.3 G, so the
field on one end of the ⇠ 1-mm-diameter cloud is about 1.25 G and about 1.35 G on the
other side. Given a quadratic Zeeman shift of 2.5 kHz/G2, the di↵erence in 2�T phases after
T = 300 µs would be 2(2⇡ ⇥ 2.5 kHz/G2)((1.35 G)2 � (1.25 G)2)(300 µs) ⇠ ⇡. Evidently the
spatially varying quadratic Zeeman shift dephases one side of the cloud with respect to the
other side of the cloud. In principle, one could recover fringes at di↵erent spots in the cloud
[145].

4.2.3 Vibration immunity

It is valuable to reinsert the phase due to accelerations and recognize the vibration immunity
of this configuration. The acceleration follows the same sign as the 2�T phase, so it appears
alongside it.

sSCRB ! B � C± cos(8!rT ) cos(2�T + 2kazT (T + T
0)), (4.10)

where az is any acceleration along the interferometer axis, gravity or otherwise. Vibrations
enter as such accelerations, for example. Accelerations from vibrations randomize the long-T
fringes in Refs. [124, 72], requiring ellipse fitting to accomplish the di↵erential phase detec-
tion. Small-phase accelerations only perturb the amplitude of this interferometer signal, not
the precious high-frequency recoil phase. The separation between timescales is admittedly
a function of T , but accelerations remain little concern below even T = 10 ms [84], well
beyond the interrogation time on our experiment.



CHAPTER 4. SENSING ATOMIC RECOIL ABOVE THE TEMPERATURE 117

4.3 Motivating the fine-structure constant

Here, we take the opportunity to motivate the fine-structure constant and measurements of
it, which are capable of heralding physics yet undiscovered.

The fine-structure constant is a dimensionless fundamental constant of nature, describing
the strength of the electromagnetic interaction. For example, the fine-structure constant can
be expressed as the number of Compton wavelengths (�C = h/mec) that fit in the lowest
Bohr orbit. While that number is not an integer – or even of order 1 – it helps establish how
the fine-structure constant relates an electromagnetic interaction energy that binds an atom
to the fundamental rest energy of an electron me.

We may write the fine-structure constant in terms of the infinite-mass Rydberg constant
R1,

↵
2

fsc = 4⇡R1
~

mec
. (4.11)

This view of the fine-structure constant su↵ers with ~/me as the least precisely-known pa-
rameter. Rewriting this expression with atomic mass units (amu) and an atomic mass ma

does not appear illuminating at first.

↵
2

fsc = 4⇡
R1

c

✓
1 amu

me

◆⇣
ma

1 amu

⌘ ~
ma

. (4.12)

This view of the fine-structure enjoys relatively more precise measurements of the electron
mass in amu [146] and many atomic masses measured in amu (i.e. relative to carbon) in
Penning traps [147, 118]. On the other hand, it su↵ers a new bottleneck: ~/ma. That ratio
also appears in an atom’s recoil frequency:

!r =
1

2

✓
~
m

◆
k
2
. (4.13)

The only other uncertainty in the recoil frequency comes from the light’s wave number k,
which a frequency comb can measure very accurately and precisely. Precision measurements
of atomic recoil frequencies can therefore be turned into precision measurements of the fine-
structure constant.

There is another route to achieving a precision measurement of ↵fsc, by measuring the
magnetic moment of a single electron via its cyclotron frequency in a Penning trap [148,
149]. That tactic measured ↵fsc to 0.28 ppb and e↵orts to improve the measurement are
underway [150]. The Standard Model predicts the electron’s magnetic moment in Bohr
magnetons (�µ�/µB) as a power series of contributions from ↵fsc and a couple terms from
hadronic and weak physics. It is possible that physics beyond the standard model (BSM)
contributes other terms yet to be discovered.

� µ�

µB
= 1+C2

⇣
↵fsc

⇡

⌘
+C4

⇣
↵fsc

⇡

⌘2
+C6

⇣
↵fsc

⇡

⌘3
+C8

⇣
↵fsc

⇡

⌘4
+ ...+ahadronic+aweak+aBSM,

(4.14)
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where the C’s are coe�cients determined by precise QED calculations (C2, C4, C6, and C8

[151] have all been calculated analytically). The final term is merely a suggestion of what
might be hiding at the frontier of precision.

Probing BSM physics requires both the measurement of ↵fsc through the electron’s mag-
netic moment, as well as an independent method. Any discrepancy between the two methods
could be due to BSM physics. The most precise measurement by atom interferometry with
133Cs [72] measured ↵fsc to 0.20 ppb, producing a fruitful comparison with an intriguing
tension and potential implications for BSM physics.

It is admittedly not always true that ~/ma is the least precise parameter in Eq. (4.12). It
is true for 133Cs, so a measurement of ~/mCs constitutes a measurement of the fine-structure
constant. The measurements of the 7Li mass lag enough that a precision measurement
of ~/mLi would not yet produce a competitive precision for ↵fsc. Of course, a precision
measurement of ~/mLi could motivate better mass measurements.

Measuring atomic masses is not required for an independent measurement of ↵fsc, it
merely circumvents the lack of precision in ~/me. Directly measuring the electron recoil
would determine ↵fsc through Eq. (4.11) without needing to insert any mass ratios. Electrons
behave as matter waves just atoms do, so electron interferometry could be a path to precise
measurements of ↵fsc. The precision that an recoil-interferometric technique confers on
↵fsc scales with the recoil frequency; the recoil frequency for an electrons that di↵ract o↵ a
1064-nm photon is an indomitable ⇠GHz [152], compared to 133Cs’ paltry 2⇡ ⇥ 2 kHz.

There are a host of severe complications when considering how to perform interferometry
with electrons. Like lithium, electrons do not enjoy the same advanced cooling techniques
that Rb and Cs do. Warmer samples lead to similar complications to those we battled with
lithium. Unlike atoms, electrons are electrically charged, so Coulomb repulsion becomes a
concern for plasmas with many electrons. The charge also requires that electrons be trapped
with electric and magnetic fields like those of a Penning trap, whose blackbody emission
limits the temperatures to which the plasmas can be cooled [153].
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Chapter 5

Tune-out measurement with
phase-patterned atom interferometry

Tune-out wavelengths lend themselves nicely to precision measurement with atom interfer-
ometers. A tune-out wavelength is essentially the wavelength of light between a pair of atomic
transitions where the transitions contribute equal and opposite AC Stark shifts. Nearby tune
out, small AC Stark shifts perturb the atomic energy. An atom interferometer is a terrific
tool to translate those small energy shifts into a matter-wave phase shift observable in the
output populations. At tune out alone, there is no phase shift.

Our sample’s diverse thermal speeds necessitate a new method, since previous techniques
could not work. We present a new method for measuring the tune-out wavelength and target
a precision of ⇠ 1 MHz, at the level of the theoretical prediction. This chapter details the
work reported in Ref. [154].

5.1 Previous tune-out techniques

We aim to construct an atom interferometer that measures a phase shift due to the AC Stark
shift. The first thought may be to drive any interferometer, for example a Mach-Zehnder,
in which the arms spatially separate. Once spatially resolved, shining a laser onto a single
interferometer arm selectively phase shifts that arm relative to the other. Fig. 5.1 displays

T T

2ħk

z

t

Figure 5.1: A Mach-Zehnder for tune out. A laser beam (purple) selectively addresses one
arm of the interferometer, inducing an AC Stark shift and interferometer phase shift that
vanish at tune out.
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this concept. Comparing the interference signal with the pulse of the beam to the interference
signal in the absence of the beam recovers the phase shift due to the beam. The phase shift
vanishes when tuning the wavelength of the laser precisely to the tune-out wavelength.

Methods like Fig. 5.1 have measured tune-out wavelengths for Rb [29] and K [26, 27].
Other methods beyond interferometry may sense the polarizability di↵erently. Any dipole
potential created by light vanishes at tune out, including any Kapitza-Dirac scattering o↵
a pulsed lattice. Kapitza-Dirac probes have measured tune out in Rb [30, 31] and Dy [32].
In another method, a radio frequency knife continuously out-coupled He from a magnetic
trap. An additional dipole potential from a laser beam modified the outcoupling rate at
every wavelength except at the tune-out wavelength [7].

The sample in this dissertation subsists at a balmy ⇠140 µK. With thermal speeds
�v ⇠ 40 cm/s and a much lower recoil speed of vr = 8.5 cm/s, the arms of the interferometer
do not separate quickly enough to overcome the rapid thermal expansion. Spatially resolving
the interferometer arms for the entire sample is impossible.

Let us consider Fig. 5.1 di↵erently. It is not important that the AC Stark-shifting beam
addresses one interferometer arm and not the other. What is important is that the AC
Stark shift is di↵erent for the two arms. In other words, the arms sample a gradient of
the AC Stark shift or a gradient of the intensity (for fixed laser wavelength). The idea
behind our application of phase patterning is to introduce a pulsed intensity gradient to the
interferometer that imprints a spatially-varying interferometer phase.

Magic versus tune-out wavelengths

There is some conflation and confusion between two distinct terms in the community: magic
wavelengths and tune-out wavelengths. The majority of mentions adopt the following nomen-
clature.

A “tune-out wavelength” is one at which a particular state in a particular species has
a polarizability equal to 0 [117, 12]. This appears to be synonymous with a “magic-zero
wavelength” [27, 155, 156] for added confusion. There is no AC Stark shift, no dipole
trapping, and no e↵ect that relies on dipole polarizability.

A “magic wavelength” is one at which the di↵erential shift (or di↵erence in polarizability)
between two levels vanishes. Each state may still have a nonzero overall AC Stark shift, but
the splitting between them is equal to the splitting in the absence of light. Magic wavelengths
can still generate a trapping potential, but leave a clock transition unperturbed [145, 104].
Tuning other parameters may also yield magic conditions, like polarization [157] or intensity
[105].

5.2 Applications of tune-out wavelengths

Light at a tune-out wavelength tunes out only for a particular state in a particular atomic
species. Other states in the same atom or other atoms still likely have a nonzero polarizability
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and experience dipole potentials. Tune-out wavelengths therefore aid in engineering quantum
states in a state- or species-dependent manner. The theory and applications for alkali atoms
are discussed in Ref. [117], while Ref. [158] treats relevant wavelengths for various pairs of
species.

Let us touch on several interesting applications of tune-out wavelengths to pique readers’
interests.

• Trap two species of gas, a target gas and a probe gas. Drive the target gas into a Mott
insulator state with a dipole potential tuned to the probe species’ tune-out wavelength.
The probe species remains a superfluid [159].

• Build a quantum computer using two separate lattices that address the 1
S0 and metastable

3
P0 states of alkaline-earth atoms like 87Sr. One lattice tunes out to 3

P0 and stores the
qubit state encoded in the 1

S0 nuclear magnetic state. The other lattice tunes out to
1
S0 and transports the qubits [160].

• Measure collisional scattering between di↵erent species confined to a di↵erent number
of dimensions [31].

• Selectively compress one gas of K using a tune-out wavelength for Rb, so that the heat
from compression dissipates into the Rb. [161]

• Place a species impurity into a gas. Investigate the dynamics of the impurity in one
dimension, an analogue to the di↵usion of a spin flip in a one-dimensional ferromagnet
[162]. A similar experiment operates in three dimensions [163].

• Launch each of two species with its own lattice tuned to a tune-out wavelength for the
other, for use in atom-interferometric tests of the equivalence principle [156].

• Probe an ultracold gas with o↵-resonant probe light at a tune-out wavelength. The
probe does not generate a dipole force so it avoids classical backaction that perturbs
the state [155].

Precision measurements of tune-out wavelengths help inform a dialogue between experi-
ment and atomic theory. The measurement in He [7], for example, has inspired a rich body
of theory working to include QED e↵ects into the polarizability calculations [8, 9, 11].

Li, a small and theoretically simple atom that permits Hylleraas calculations like He,
presents a new opportunity to drive progress in collaboration between theory and experiment.
Atom interferometry with a supersonic beam measured the static DC polarizability of lithium
[24], but no scientist has yet measured a tune-out wavelength or the dynamic polarizability
in lithium. The lack of precedent motivates a study. There is a significant isotope shift
in the tune-out wavelengths of the two isotopes 6Li and 7Li that is of considerable interest
to theorists [12, 117]. Li’s small D-line splitting also places its tune-out wavelength very
close to each transition, a proximity that enhances the possible sensitivity of a tune-out
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Figure 5.2: Tune-out measurement interferometer geometry. A four-pulse Mach-Zehnder
produces two interferometer arms in the same internal state during T

0. The arms sample
the intensity gradient of a pulsed laser beam (purple central pulse). The Raman frequencies
step by !m for the final two pulses in order to introduce a tunable phase di↵erence to the
interferometer. The e↵ect of the beam vanishes at tune out.

wavelength measurement. In combination with the precise calculations in the Hylleraas basis
and beyond, the polarizability of Li is among the most precisely calculable and measurable
across the periodic table, making it a prime candidate to serve as a reference species for
dynamic polarizability. One experiment has already demonstrated a method employing a
reference species (K) to measure the polarizability of another exotic species (Dy) using the
oscillation frequency in a dipole trap [164].

5.3 Phase-patterned atom interferometry

The impossibility of addressing a single arm of our lithium interferometer motivates reframing
Fig. 5.1 as sampling an intensity gradient. Here, we present the concept of phase-patterned
atom interferometry.

5.3.1 Interferometer geometry

There is a significant di↵erence between each of the hyperfine ground state’s tune-out wave-
lengths. It is not satisfactory to pulse a beam that simultaneously addresses multiple hy-
perfine states because when the beam tunes out for one state, a nonzero e↵ect on the other
state remains. We must pulse a beam that addresses a single hyperfine state and whose e↵ect
vanishes at a tune-out wavelength for that state. The four-pulse Mach Zehnder volunteers
a time T

0 during which the arms are in the same internal state. The Ramsey-Bordé also
does, but has the disadvantages of sporting a recoil phase that does not interest us and of
requiring that the k vectors be reversed in the middle.1 The four-pulse Mach-Zehnder is the
tool of choice.

Forgoing a reversal of the k vectors removes the 8!rT and 2�T phases from the recoil
energy and two-photon detuning. Operating perpendicular to gravity removes the 2kgT (T +

1We perform k reversal for the Ramsey-Bordé with an EOM, which sacrificies some of the Raman optical
power. Removing the EOM and not having to reverse k vectors recovers some optical power and increases
the e�ciency of the beam splitters.
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Figure 5.3: Phase-patterned atom interferometry. Left shows a tightly focused Stark-shifting
beam (purple intensity profile) that pulses through the center of the sample (red outline),
both shown on spatial axes. Spacetime diagrams of the interferometer scheme lie within the
sample. For an atom below (above) the center of the beam, the interferometer samples a
positive (negative) intensity gradient. Right shows the resulting atomic density profile. The
interferometer translates the opposite phase di↵erences from opposite intensity gradients
into opposite population di↵erences.

T
0) phase from accelerations. This interferometer has no phase di↵erence. We modify the

Raman frequencies of the final two pulses (!1 ! !1 + !m and !2 ! !2 � !m) in order to
introduce a nonzero and controllable 2!mT phase di↵erence to the interferometer.

A laser beam tuned near the tune-out wavelength pulses while the arms are in the same
internal state. The matter wave along each arm advances in phase according to the internal
energy as perturbed by the local AC Stark shift. In the presence of a nonzero AC Stark shift,
i.e. away from tune out, the arms’ matter waves advance at di↵erent rates since they sample
di↵erent local intensities. The phase di↵erence is proportional to the intensity di↵erence
�� / (dI/dz)�z, where �z is the arm separation.

If the entire cloud sampled the same intensity gradient, there would be an overall phase
shift in the interferometer common to the whole sample, present if and only if the beam
pulses. One could, in principle, align a laser beam’s center beyond the edge of the sample
and induce such a uniform phase shift. The beam would have to be large in order to produce
a uniform intensity gradient across the entire ⇠1-mm-wide sample and the power would need
to be substantial to produce an appreciable gradient. We could not achieve the specifications
to make this method viable.

Tightly focusing a beam produces larger intensity gradients for a fixed power, albeit on
a smaller length scale. Sending the beam directly through the center of the sample presents
atoms below (above) the center of the beam with a positive (negative) intensity gradient.
The opposite intensity gradients produce opposite phase di↵erences that the interferometer
translates into opposite population di↵erences. The intensity gradient directly patterns a
density profile onto the sample, so we term the technique “phase-patterned atom interfer-
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Line F
0 �0;Di,F 0 / MHz

D1 1 -91.88
D1 2 0
D2 3 10011.99
D2 2 10021.46
D2 1 10027.27
D2 0 10030.03

Table 5.1: 7Li hyperfine detunings from f0 = 446, 799, 862.994(2) MHz, the |2S1/2, F = 2i !
|2P1/2, F

0 = 2i transition. Data are from Ref. [115].

ometry”.
Atom interferometry experiments nearly always sum the output populations across the

entire size of the sample. Here, the region of excess density would cancel the region of reduced
density and the signal summed across the sample would be 0. This technique requires sensing
spatial features within the output populations.

5.3.2 The signal

Each arm of the interferometer samples the local AC Stark shift; the matter-wave phase
advances at the internal state frequency !b plus the perturbation. The phase di↵erence
between the arms is their matter-wave frequency di↵erence between upper and lower arms,
integrated over the pulse time ⌧ .

��(x, z) = �1

~(�UAC,u(x, z)��UAC,l(x, z))⌧ = �1

~�(�UAC(x, z))⌧. (5.1)

We may neglect hyperfine structure and use the e↵ective saturation intensities for each
line. We reference laser detunings �0 to the |2S1/2, F = 2i ! |2P1/2, F = 2i transition at
frequency f0. At the tune-out wavelength between the D1 and D2 lines, the detuning from
D1 (D2) is positive (negative), the di↵erence set by the fine-structure splitting.

Let us consider the local AC Stark shifts. Neglecting the hyperfine structure, using the
e↵ective saturation frequencies for circular polarization, and assuming �D1 ⇡ �D2 ⌘ �, we
would find

�UAC(x, z) ⇡
�
2

8
I(x, z)

 
1

�0I
⇤
sat,D1,TO

+
1

(�0 ��FS)I⇤sat,D2,TO

!
, (5.2)

where �FS ⇠ 10 GHz is the fine-structure splitting.
More accurately, each hyperfine transition adds its own contribution to the AC Stark

shift. We label the detuning from f0 as �0;Di,F 0 . Fig. 2.14 shows these detunings and Table
5.1 tabulates them.

�UAC(x, z) =
1

8
I(x, z)

X

i2{1,2},F 0,m0
F ,q

�
2

Di|✏q|2C2(JFmF ; J 0
F

0
m

0
F ; q)

(�0 ��0;Di,F 0)Isat,Di
. (5.3)



CHAPTER 5. TUNE-OUT MEASUREMENT WITH PHASE-PATTERNED ATOM
INTERFEROMETRY 125

For this measurement, the ground state has J = 1/2, F = 2, mF = 0.
Even Eq. (5.3) is not truly exact and would require some modifications for better pre-

cision. First, we sum here only over the hyperfine structure on the D1 and D2 lines, while
truly all excited states n0 contribute an AC Stark shift. Lithium’s small �FS does, however,
render the D-line contributions far more potent than any of the distant n0 � 3 transitions.
Second, this simple form �UAC = ~⌦2

/4� assumed the RWA. The RWA accurately ap-
proximates the Stark shift for transition frequencies near the laser frequency, but neglects
an important term for detunings approaching the laser frequency. Given the small D-line
detunings for Li’s tune-out wavelength, those terms are negligible in this experiment. Third,
the hyperfine detunings should technically contain any Zeeman shifts or other perturbations
[28]. All these e↵ects are small in our system, so we can safely neglect them in this work
when it is convenient. Eq. (2.139) and the definitions that follow it are more cumbersome,
but more accurate.

The intensity profile of the beam follows a Gaussian profile

I(x, z) =
2P

⇡wxwz
e
�2x2/w2

xe
�2z2/w2

z (5.4)

with power P , waist wz along the interferometry axis and waist wx perpendicular to the
interferometry axis. The interferometer only samples an intensity gradient along the inter-
ferometry axis z, so

�(�UAC(x, z)) ⇡
dI(x, z)

dz
�z =

dI(x, z)

dz
(2vrT ), (5.5)

where �z is the interferometer’s arm separation along the interferometry axis. We have
assumed that the arm separation is small compared to the intensity profile. Di↵erentiating
the intensity profile, we find

��(x, z) / � Pz

⇡wxw
3
z

e
�2z2/w2

zvrT ⌧. (5.6)

The intensity gradient reaches a maximum at |z| = wz/2, so the phase di↵erence reaches a
maximum absolute value of

max(|��(x, z)|) / P

wxw
2
z

vrT ⌧. (5.7)

The more favorable scaling of the signal with wz compared to wx motivates an asymmetric
beam with a tighter waist along the interferometry axis. Tightening the waist along x does
still help increase the maximum intensity gradient, but making it smaller than the size of
the sample reduces the number of atoms that get to participate in the signal.
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Figure 5.4: Thermally Dephased Signal. Numerical integration of the signal over the thermal
velocity distribution and beam profile shows a reduction in contrast due to the thermal
motion of the atoms.

5.3.3 Dephasing from thermal and launch speeds

The reasoning towards the maximum phase di↵erence Eq. (5.7) considers atoms at rest. The
high thermal speeds ⇠ 1/2 m/s are a detriment to the signal. The arms do not necessarily
sample a constant intensity gradient as atoms wander through the intensity profile during
the pulse. An atom at |z| = wz/2 is unlikely to achieve the maximum phase di↵erence as
its trajectory removes it from that most sensitive position. Even after the pulse imprints
the interferometer phase, atoms continue along their trajectories both between the pulse
and the end of the interferometer, as well as between the end of the interferometer and
detection. This itineracy smears out the resulting density profile of interest. Furthermore,
our sample enters the interferometer with a nonzero launch speed along the intensity profile,
vlxx̂ + vlz ẑ in the x� z plane. That also reduces the signal contrast since atoms are biased
to be transiting across the beam profile during the pulse

Consider a single atom beginning the interferometer at a position (x0, z0) and moving at
a velocity vxx̂+ vz ẑ in the x� z plane. It integrates a phase di↵erence during the pulse time

��SA =
�UACp

~

Z ⌧

0

dt e
�2(x0+vx(t+T ))

2/w2
x

⇣
e
�2(z0+2vrT+vz(t+T ))

2/w2
z � e

�2(z0+vz(t+T ))
2/w2

z

⌘
,

(5.8)
where �UACp is the peak AC Stark shift at the center of the beam.

We image the atoms at final positions after the interferometer xf = x0+ vx(2T +T
0) and

zf = z0 + 2vrT + vz(2T + T
0). The final signal as a function of position integrates over the

atomic density and Maxwell-Botlzmann distributions.

s(xf , zf ) =
C

2(2⇡)3/2�vx�vz�a

⇥
Z 1

�1
e
�(x2

f+z2f )/2�
2
ae

�(vx�vlx)2/2�2
vxe

�(vz�vlz)2/2�2
vz cos(��SA) dxf dzf dvx dvz,

(5.9)

where �vx and �vz are the standard deviations of the Maxwell-Boltzmann speed distribu-
tions along each axis and we assume a Gaussian atomic density distribution with standard
deviation �a ⇠ 500 µs.

Numerically integrating the signal in Mathematica served as a useful tool for projecting
the sensitivity of the interferometer. Fig. 5.4 shows an example result of the atomic density



CHAPTER 5. TUNE-OUT MEASUREMENT WITH PHASE-PATTERNED ATOM
INTERFEROMETRY 127

0 20 40 60 80 100 120
0.22

0.26

0.3

0.34

0.38

τd / μs
P F

=1

Figure 5.5: Decoherence of complementary F = 1 interferometer. With fm = 14.5 kHz, a
pulse of MOT repump light during T 0 decoheres the complementary interferometer occupying
|2S1/2, F = 1i. (05/23/2018, GCs -29126 to -29042).

from the numeric integration. As a proxy for the sensitivity, we used the signal strength at
zf = wz/2 for di↵erent values of �0 and predicted its slope as it crossed through zero. Mul-
tiplying this sensitivity by the noise amplitude from di↵erent sources predicts the precision
of the measurement.

5.3.4 Population selection

Optical pumping delivers atoms in |2S1/2, F = 2,mF = 0i to the interferometer. Roughly,
80% of the atoms occupy mF = 0, 16% occupy mF = +2, 4% occupy mF = �2 and there
are essentially none in mF = ±1.

The interferometer itself generates amplitude in both F = 1 and F = 2 during T
0 in

spite of the input state preparation. The F = 2 interferometer is a flat rhombus, while the
recoiling F = 1 component closes a separate interferometer shaped like an angled rhombus.
The two interferometers are complementary in the sense that they have precisely the same
phase di↵erence, 2!mT . The two signals add.

Introducing the phase patterning pulse breaks the equality of the interferometers, since
the light perturbs each state di↵erently. Each state contributes a di↵erent phase pattern at
every wavelength and each advertises a tune-out wavelength di↵erent by roughly the 800-
MHz ground-state hyperfine splitting. A precision measurement at the 1-MHz level must
isolate one hyperfine state or the other, so we decohere the interferometer in F = 1 during
T

0.
A pulse of MOT repump light specifically addresses F = 1, driving incoherent scattering

events on the D2 line. It spoils the coherence of that interferometer and reduces the contrast.
The peak population stands as a proxy for the total contrast since C / max(PF=1). We fix
!m = 2⇡⇥14.5 kHz at the top of an interference fringe and scan the decohering pulse length
⌧d. The peak population decays with a time constant 6.5(1.7) µs (Fig. 5.5).

The coherence of the F = 2 interferometer should persist regardless of the MOT repump
pulse. Fig. 5.6 shows the 2!mT fringes with both populations (upper), as well as the
fringes that remain after a 70-µs pulse to decohere the F = 1 interferometer (lower). Both
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Figure 5.6: Four-pulse Mach-Zehnder fringes. Both interferometers’ signals add in the
fringes above (asterisks) (07/17/2018, GCs -31652 to -31464). Fringes only contain the
lower interferometer signal (circles) after a pulse decoheres the complementary interferome-
ter (07/17/2018, GCs -31066 to -30847). Pulse separation times are T = 53 µs and T

0 = 110
µs.

interferometers produce a contrast of ⇠20%, while the F = 2 interferometer alone produces
half the contrast, ⇠10%, as expected.

5.3.5 Bias phase for sensitivity

Detection measures a population, not the interferometer phase di↵erence directly. Measuring
the population registers a normalized signal

s = B +
C
2
cos(��(x, z)), (5.10)

where B is the normalized background population. The sensitivity therefore depends on the
phase di↵erence.

ds

d��
/ C sin(��(x, z)). (5.11)

To maximize the sensitivity to additional phase shifts due to the intensity gradient, we bias
the phase di↵erence to an odd multiple of ⇡/2 using the modulation frequency on the third
and fourth Raman pulses.

We tune the sensitivity to be positive at f+

m or negative at f�
m. At f

+

m (f�
m), an additional

positive phase di↵erence produces a maximal positive (negative) change in the observed pop-
ulation. Pulsing the Stark-shifting beam during T

0 introduces an additional phase di↵erence
that is spatially dependent. The sign of the population di↵erence depends on the sign of the
sensitivity, so reversing the sensitivity from f

+

m to f
�
m reverses the signal imprinted onto the

atomic density.
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Figure 5.7: Raw images. Even at our furthest detuning from tune out where the signal
should be strongest, opposite sensitivities for which the pattern should reverse look nearly
identical (a and c). Unpulsed images without the Stark pulse and its e↵ect (b and d) also
look nearly indistinguishable from the pulsed images (07/17/2018, GCs left to right: -19702,
-19705, -19701, -19692).
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Figure 5.8: Position drifts. The fitted center of the sample fluctuates on short time scales
and drifts on long time scales, on a length scale comparable to the size of the Stark-shifting
beam. The data span ⇠ 7 hours (08/07/2018, GCs 6000 to 18000).

5.4 Image Processing

Multiple factors make make reading out the signal in this experiment very challenging.
First, the signals are small. While the largest expected phase shift for a stationary atom at
|z| = wz/2 and x = 0 for our largest detuning from tune out is ⇠ 3⇡ radians, but thermal
dephasing significantly mutes the pattern. Second, the interferometer has a paltry contrast
of only ⇠ 10%. Fig. 5.7 displays raw images, including two images ((a) and (c)) for which the
signal is maximal and opposite in sign. Third, thermal e↵ects in the laboratory deflect MOT
mirrors that sit atop tall aluminum posts. This changes an étalon interference pattern MOT
arms 1 and 2 generate as they propagate through the large North/South vacuum viewports
that are not anti-reflection coated. It results in changes in the launch velocity of the sample
and produces both fast fluctuations and slow drifts in the position of the cloud, each of which
is on the order of the size of the Stark-shifting beam waist (see Fig. 5.8). Shrouding the
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(a) Frame for curtains (02/13/2018) (b) Experiment in curtains (07/18/2018)

Figure 5.9: Curtains for thermal stability.
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Figure 5.10: Modulated parameters for tune-out scan. Pluses (minuses) represent shots with
positive (negative) phase sensitivity using f

+

m (f�
m). Solid (dashed) circles represent pulsed

(unpulsed) shots.

experiment in curtains (see Fig. 5.9) reduced the excursions by at least a factor of 2, but
the problem remained.

5.4.1 Modulated data set

As Fig. 5.7 shows, we generate one of four image types on each experimental iteration.
We take images for each sensitivity where the Stark-shifting beam does pulse and some
where it does not pulse. As the wavelength of the laser scans across tune out for the pulsed
shots, unpulsed shots regularly interrupt the scan. The di↵erence between the pulsed and
unpulsed shots should isolate the e↵ect of the beam. We take pulsed and unpulsed shots
for each sensitivity. Any e↵ects that alter the interferometer phase di↵erence reverse their
contribution to the signal upon sensitivity reversal, whether or not the e↵ect is associated
with the Stark-shifting pulse.

The scan spans a wavelength range that is not symmetric about tune out, as Fig. 5.10
shows. The asymmetry is primarily the consequence of a technical limitation; the Agilent
E4422B ESG-A signal generator that controls the Stark laser wavelength switches between
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Figure 5.11: Image types and their components. (a) schematically represents the four image
types. (b) schematically represents individual components that sum to the image types in
(a).

sources to cover its specified range. One such source switch sits at the edge of our scan
around �0 ⇡ 2⇡ ⇥ 3465 MHz. The reference tone in the phase lock falls silent momentarily,
which destroys the lock when the source switches and precludes automating the scan over
the chasm. The maximum detuning from tune out is roughly

�M ⌘ max(|�0 ��TO|) ⇠ 2⇡ ⇥ 400 MHz. (5.12)

We parameterize the four image types with the presence (lack) of a pulse p = 1 (p = 0)
and the ± phase sensitivity: i±p,j. Each image indexed by j can be approximated as a sum
over five main components (Fig. 5.11): A is the underlying atomic density profile, B is
any pattern not associated with the Stark-shifting pulse that is imprinted onto the cloud
as a result of the interferometer, Z(�0,j) is a monopole-shaped pattern that results from
single-photon scattering from the Stark-shifting pulse, the coherent interaction with the
Stark-shifting beam imprints the phase-patterned signal S(�0,j) that reverses across tune
out, and Nj is noise.

i±p2[0,1],j = ajA± bjB+ p (⇣jZ(�0,j)± &jS(�0,j)) +Nj. (5.13)

The bold-face type emphasizes the matrix representation of each image and component.2

Each weight is a projection of the image onto a static matrix that represents the compo-

2Fun fact: In Greek, when s ends a word, the character changes to c. For example, the island Mykonos
is spelled Mukonoc, not Mukonos.
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nent.

aj =
�
i±p,j ·A

�
(5.14)

bj =
�
i±p,j ·B

�
(5.15)

⇣j =
�
i±p,j · Z(�0,j)

�
(5.16)

&j =
�
i±p,j · S(�0,j)

�
, (5.17)

where the projection, or dot product, is a normalized sum over pixel-by-pixel products

(V ·W) =

P
x,z V (x, z)W (x, z)

P
x,z W (x, z)W (x, z)

. (5.18)

Altogether, roughly 330,000 of these images comprise the data set that we use to deter-
mine tune out.

5.4.2 Averaging

The most straightforward way to improve the signal-to-noise ratio beyond that in Fig. 5.7
is to average down the noise. We partition the images into subsets ⇠ and average images
of each type at a fixed Stark laser wavelength within each subset. Residual images, the
di↵erence between pulsed and unpulsed, contain both the signal of interest and the e↵ect of
scattering.

hR±(�0)ij2⇠ ⌘ hi±
1,k(�0,k = �0)ik2⇠ � hi±

0,lil2⇠. (5.19)

With su�cient averaging, imaging noise hNi ⇡ 0 and both A and B should cancel between
the pulsed and unpulsed images. Only the signal of interest and scattering should remain,
both with patterns and projections that are a function of wavelength.

hR±(�0)ij2⇠(�0) ⇡ h⇣jij2⇠Z(�0)± h&kik2⇠S(�0). (5.20)

Taking the di↵erence between the two residuals produces a di↵erence image for which the
scattering should cancel and leave only the signal.

hD(�0)ij2⇠ ⌘ hR+(�0)ij2⇠ � hR�(�0)ij2⇠ ⇡ 2h&jij2⇠S(�0). (5.21)

The subsets should be large enough to capture the full range of the fast fluctuations
in position, atom number3, etc., and they should be small enough to sample only a stable
portion of the slow drift. We ultimately optimize the size of the subset for the lowest error
in the tune-out measurement, resulting in subsets of roughly 1,000 images spanning ⇠30
minutes. Fig. 5.8, for example, contains 12 1,000-image subsets.

3Note that the normalized imaging scheme no longer helps in processing the images for the tune out
wavelength (other than producing cleaner 2!mT fringes for Fig. 5.6). One could normalize each image to
the total number of atoms on that shot, but we opted not to because doing so produced slightly larger errors.
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Figure 5.12: Noise and signal vectors from principal component analysis (PCA). This is just
a sampling of the vectors PCA returned for our data set. (07/30/2018)

5.4.3 An aside on principal component analysis

We originally planned to use principal component analysis (PCA) to read out the faint
signal from noisy images [114]. Complications with its results precluded its application in
our precision measurement. Before presenting our final method of choice, here we briefly
mention the concept and inconsistencies that disfavored it.

PCA applies straightforward linear algebra to reduce the dimensionality of data, details
perspicuously described in [165]. Images are typically represented as matrices of pixel values.
The dimension of the image is simply the number of pixels, each image being the sum over
pixel vectors (each a matrix with all 0s, except for a single 1 at the location of the pixel in
the detector array), each multiplied by the detected intensity at that pixel.

Cold-atom experiments rarely concern themselves about such fine details as to require
detailed pixel-by-pixel information. They are instead interested in more global properties of
the sample, like its summed atom number or movement within a region. PCA finds these
vectors of interest like atom number and movement, making obsolete the unnecessarily large
number of single-pixel vectors. Then, each experimental shot may be described as a sum of
how many atoms there are multiplied by the atom-number vector, how far the sample has
moved along x multiplied by the x-movement vector, etc. Calculating these vectors with
PCA amounts to finding the eigenmodes of pixel variations in the image array. Note that
specifying to eigenmodes of “variation” among images implies first removing the average
of the images, which is the first step of PCA. In this case, we first subtracted the average
unpulsed image for each sensitivity to avoid subtracting the signal out of the images.

We envisioned identifying the signal vector using PCA (i.e. the density pattern induced
by the Stark shifting beam) and projecting each image onto the signal vector to quantify
how strong the signal was in each image. That signal strength should cross through 0 at
tune out, similar to projections curves in the following sections. A series of issues arose in
implementing this simple idea.

The signal vector of interest looks like an excess of atoms above the beam center and a
dearth of atoms below (or the reverse). That signal vector looks substantially like a significant
source of noise: movement of the sample (specifically along the interferometry axis). Even
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Figure 5.13: Residual images.

when the signal should vanish at tune out, nothing more than movement of the sample might
masquerade as signal. We attempted to remove the e↵ect of noise by “deprojecting” it. That
is, we computed the projection of each image onto each vector describing a noise mode and
subtracted the noise vector weighted by that projection. Deprojection could, in principle,
remove everything but the remaining signal, in particular when the noise is orthogonal to
the signal. Our noise is not necessarily orthogonal to the signal. A cartoon linear algebra
analysis showed that this should only introduce a noise term that averages to 0 with a large
enough data set. Nevertheless, we did try to orthogonalize the noise vectors to a signal
model using a Gram-Schmidt routine prior to deprojecting.

All our attempts to identify tune out from subsets of the data led to results that varied
by roughly 20 MHz in tune out and nearly 10 times the error bar on each point. Modifying
aspects of the analysis that should have had no e↵ect on the result did have significant e↵ects
on the results well beyond their error bars. We never identified the precise reason that PCA
failed to deliver consistent results on our data set, but we caution that a decision to apply
PCA in precision measurement should be treated with extreme care.

We now describe the simpler method that delivered more consistent results.

5.5 Phase patterning results

5.5.1 The signal

Fig. 5.13 shows several of the di↵erence images as a function of wavelength. The di↵erence
images for a single subset have relatively low signal-to-noise ratio, but the signal is visible.
The signal of interest becomes more prominent after averaging each wavelength’s di↵erence
image over all subsets.

The signal reverses sign as the Stark laser scans across tune out. To find where the sign
reversal occurs, we first fit the signal to a particular geometry that describes the expected
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Figure 5.14: Stark signal model.

signal. The di↵erence image with the highest signal-to-noise ratio is the one tuned furthest
from tune out: D(�M). The model M follows a functional form fixed by Eq. (5.6). The
signal is a sine of that phase di↵erence4, but for the small phase di↵erences we observe, the
signal is essentially the phase di↵erence. The model contains six free parameters:

M(a, ✓, x0, z0, �x̃, �z̃) = az̃e
�(z̃�z0)2/2�2

z̃e
�(x̃�x0)

2/2�2
x̃ , (5.22)

where a is an amplitude, (x0, z0) is the center of the pattern, and the coordinates (x̃, z̃) are
tilted to an angle ✓ about (x0, z0).5

x̃ = x0 � ((x� x0) cos(✓)� (z � z0) sin(✓)) (5.23)

z̃ = z0 � ((x� x0) sin(✓) + (z � z0) cos(✓)) (5.24)

A �
2 minimization routine optimizes the parameters to fit M to D(�M) and Fig. 5.14

displays the result.
Projections of D(�0) onto M cross through zero and reverse sign across tune out. Each

subset ⇠ returns one projection per �0: hD(�0)ij2⇠ · M (left in Fig. 5.15). A fit to that
curve crosses through zero at �TO,⇠, the subset’s estimate of tune out.6

Two routes produce error bars to satisfy any curiosity about the distribution of errors.
First, we average each single subset’s hD(�0)ij2⇠ ·M curve over the entire data set. That
produces a projection curve with error bars on each point, plotted on the right in Fig. 5.15.
The errors are too small to be visible on the projection curve, though a plot of the fit residuals
makes them visible. The residuals are consistent with zero.

Alternatively, the subsets generate 320 individual estimates �TO,⇠ amenable to statistical
analysis. Fig. 5.16 shows these 320 results along with a histogram binning the data and
a gaussian fit to the histogram. The results pass goodness-of-fit normality tests (Lilliefors,
Jarque-Bera, �2, and Kolmogorov-Smirnov) and appear as convincingly Gaussian as a rea-
sonable person could want. The normality of the distribution justifies using a standard error
as the uncertainty metric.

h�TO,⇠i = 2⇡ ⇥ 3335.5(1.1) MHz. (5.25)
4The interferometer signal for a four-pulse Mach-Zehnder looks like a cosine, but tuning the phase

di↵erence to an odd multiple of ⇡/2 using the bias from f±
m

makes it look like a sine for which sin(��) ⇡ ��.
5The tilt is a consequence of the Raman beams not being aligned precisely to the z axis the CCD images.
6The fit also returns a fit uncertainty on the parameter, but we found those errors to underestimate the

error. that is, they are small compared to the scatter in the data, so we ignore them.



CHAPTER 5. TUNE-OUT MEASUREMENT WITH PHASE-PATTERNED ATOM
INTERFEROMETRY 136

2900 3000 3100 3200 3300 3400 3500

−0.4

0

0.4

0.8

1.2

Δ0 / 2π MHz

�D
(Δ

0)
� j∊

ξ=
19
3�M

 (a
rb

. u
ni

ts
)

ΔTO,ξ −0.4

0

0.4

0.8

1.2

D
(Δ

0)
�M

 (a
rb

. u
ni

ts
)

fit
 re

si
du

al

2900 3000 3100 3200 3300 3400 3500

−0.01

0

0.01

Δ0 / 2π MHz

(b)(a)

Figure 5.15: Projections of residual images D onto the model M. In (a), di↵erence images
from a single subset s of the data are projected onto the model. In (b), we reduce the noise
in the curve by constructing a curve such as in (a) for each subset s. Averaging over each
of those curves produces (b), where error bars are shown but are smaller than the markers.
The fit residuals for the averaged curve are consistent with 0.
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Figure 5.16: Statistics of subsets’ results. Each subset returns one of 320 estimates of tune
out. The results bin to a gaussian distribution (fit in purple).
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Figure 5.17: A and B from unpulsed images. The unpulsed averages are taken over the
entire data set.

We also computed the overlapped Allan deviation [154] and observe that the uncertainty
integrates down with a power of -0.4 in the measurement time, slightly slower than the
expected square-root scaling.

5.5.2 Scattering and other features

The di↵erence images are the most relevant to the tune-out signal, but the other base
components are also accessible via Eq. (5.13). The underlying atomic density A should be
the sum of the two sensitivities’ unpulsed averages (left of Fig. 5.17). Taking the di↵erence
between the unpulsed averages of the two sensitivities should cancel A and reveal B.

The manifestation of B in the data (right of Fig. 5.17) remains a mystery of the data
set. It is unclear what process generates this interferometer- and sensitivity-dependent back-
ground signal.7 It is unlikely to be a magnetic field gradient, since the pattern is e↵ectively
perpendicular to the interferometer axis and the interferometer could only sample magnetic
field gradients along the interferometer axis. It is probable that the Raman beam centers
are not precisely aligned to the center of the sample. Misalignment would produce an in-
tensity gradient across the sample that might result result in a position-dependent o↵set
phase through finite pulse e↵ects. The sensitivity reversal could not be tuned properly for
the entire sample simultaneously, resulting in population gradients that change sign with the
sensitivity.

Alert or skeptical readers may notice an asymmetry in the di↵erence images of Fig. 5.13.
The blue lobe of the signal appears consistently stronger than the red lobe. The asymmetry
could result if the scattering monopole Z does not appear with equal strength in R±.

We isolate the scattering monopole in the data not by taking the di↵erence of residual
images as in Eq. (5.21), but by summing them. The signal should cancel and reveal the
pattern due to scattering. Fig. 5.18 shows these images averaged over the entire data set.
The wavelength dependence is weak, so we can achieve a higher signal-to-noise image by
averaging over wavelengths as well (bottom left of Fig. 5.18). Computing the projection

7We discovered the dependence of the unpulsed images on interferometer sensitivity well after the data
campaign. Early analysis treated all unpulsed shots equally, irrespective of sensitivity, so finding the de-
pendence was critical in developing a consistent analysis method. I am unbelievably grateful to my prior,
prescient self for deciding to take unpulsed shots with both sensitivities.
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Figure 5.18: Scattering images. The sum of residual images cancels the signal of interest and
isolates single-photon scattering. The pattern (shown in (a) at each wavelength) is largely
independent of wavelength, permitting an average, shown in (b). In (c), projections of each
wavelength’s image onto the average show a small dependence on wavelength. A calculation
of the probability that an atom scatters and falls into the detected F = 1 state produces the
red curve, which is rescaled to match the projections’ units.

of each wavelength’s image onto the average illustrates the weak wavelength dependence of
the scattering rate near tune out. The total scattering rate is not the quantity that should
reproduce this dependence, but rather the probability that an atom that scatters decays
into F = 1 to be detected. Computing that quantity reproduces the dependence, at least
qualitatively.

The fact that the scattering survives Eq. (5.21) to produce the blue-lobe preference
is another outstanding mystery of the data set. It is unclear why the scattering appears
stronger in R� compared to R+. Taken alone, it should not be concerning, assuming the
scattering pattern and the signal pattern are centered on each other. At tune out, there
would be no signal and a monopole scattering pattern that is even about the center. The
model M is odd about the center, so the projection should be 0 and there should8 be no
systematic shift to the projection curves in Fig. 5.15.

Any position o↵set between the the monopole scattering pattern and the dipole signal
pattern spoils this assumption. If M is o↵set with respect to Z, then even at tune out when
only Z remains, there would be a nonzero projection onto M, systematically shifting the
entire projection curve. With that, we arrive at our analysis of systematic e↵ects.

8My undergraduate advisor Prof. Jutta Luettmer-Strathmann likes to say, “’Should’ is a four-letter
word”. I hear this refrain quite often in the back of my head.
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Figure 5.19: Projective result versus pixel o↵set. If M is not centered on the scattering
pattern, it shifts the result by ⇠ 4.5 MHz per pixel o↵set.

5.6 Systematic e↵ects

5.6.1 Scattering recoil and one-dimensional analysis

If Z and S are not centered on each other, the projective analysis presented above su↵ers a
systematic shift. The two patterns both originate from the same Stark-shifting beam profile,
so we might expect them to be centered on each other. There is nevertheless an important
di↵erence between the processes that generate the two patterns. The coherent e↵ect of the
beam that generates S remains e↵ectively stationary and centered on the beam because the
dipole forces due to the small AC Stark shifts are small.

Any atom that scatters, however, recoils with an average velocity vr along the beam’s
propagation direction. The Stark-shifting beam axis cannot be perfectly aligned to the
imaging beam axis, so there is a projection of the Stark beam axis onto the imaging plane.
Consider a ⇠ 5� tilt between the beams. The scattering pattern drifts at vr from the moment
of scattering through to detection. Assuming an atom scatters halfway through T

0 = 110
µs, it continues through the final T = 53 µs to detection. That totals to ⇠ 100 µs recoiling
at a speed ⇠ vr sin(5�) in the imaging plane, a distance of about 1 µm.

We can quantify the e↵ect by intentionally shifting M by a number of pixels and per-
forming the full analysis. Fig. 5.19 shows the results, yielding a systematic shift of about
4.5 MHz per pixel o↵set. This is large enough to warrant further investigation.

Phase patterning can produce nontrivial patterns in multiple dimensions. Our mea-
surement utilizes information only along the interferometer axis, so we may integrate pixels
perpendicular to the interferometer axis. The fit of D(�M) to M returns an angle 4.4�, so we
rotate the di↵erence images by that angle, using a bicubic interpolation, before integrating.
Fig. 5.20 shows the resulting one-dimensional trace for D(�M), which exhibits a dramatic
asymmetry due to scattering.

We fit each one-dimensional trace to the sum of a signal portion of the fit and a scattering
portion of the fit (top of Fig. 5.21).9 Both the signal portion and scattering portion of the
fit deliver their own amplitudes. We plot the amplitude of the signal portion of the fit and

9Before fitting, we generate error bars that weight for the atomic density. That procedure suppresses
the importance of points away from the center where the signal sits.
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Figure 5.20: Dimension reduction. As shown in (a), we tilt out the angle appearing in the
di↵erence images and integrate the pixel values perpendicular to the interferometer axis to
generate a one-dimensional signal as shown in (b).
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Figure 5.21: One-dimensional analysis. In (a), we fit each one-dimensional trace to the sum
(blue dashed line) of a signal portion (green line) and a scattering portion (red dot-dot line).
Tune out is where the amplitudes of just the signal portion of the fit cross through zero,
shown in (b) with fit residuals that do show clear structure.
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Figure 5.22: Cubic fit to one-dimensional signal amplitudes. We do not report this value.

estimate tune out �TO,1D as the frequency at which a fit to the amplitudes crosses through 0
(bottom of Fig. 5.21). To estimate the error, we compute the standard deviation of jackknife
estimates of the zero crossing. That is, we fit for the zero crossing neglecting each point on
the curve, one at a time, and calculate the square root of the variance among the estimates.
Jackknifing the error here results in an error bar 40% larger than the fit uncertainty. This
should account for what may be nontrivial structure in the fit residuals.

�TO,1D = 2⇡ ⇥ 3328.0(1.4) MHz. (5.26)

This value is shifted down by about 8 MHz compared to the two-dimensional projective
analysis. We see a one-to-two pixel o↵set between the signal portion of the fit and the total
fit in the one-dimensional trace for D(�M), consistent with the rough estimate of 4.5 MHz
per pixel o↵set.

The structure in the residuals of the fit in Fig. 5.21 might make some readers uncomfort-
able. In Fig. 5.22, we include a cubic term in the fit function. The residuals qualitatively
improve and the fit crosses through zero at 3328.86(1.42) MHz. Nevertheless, we choose to
report the result from Fig. 5.21 with the linear fit because that fit more closely matches
the result of a fit that excludes the first 5 points where the curvature is most dramatic
(3329.30(1.40) MHz).

5.6.2 Cold-atom spectroscopy

Spectroscopy of the cold-atom sample itself solves two problems. First, it allows us to
calibrate and determine the Doppler shift the atoms see on the Stark-shifting beam during
the tune-out measurement. Second, it allows us to set a baseline f0 to which we reference
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Figure 5.23: Cold-atom spectra. Spectroscopy of the cold atomic sample measures the D1

resonances along two axes: z in (a) and along the axis we use to measure tune out in (b).
The spectra establish a spectroscopic baseline and calibrate a Doppler systematic. Insets
show an example of the excitation whose sum is plotted. (CAS-z: 07/30/2018, GCs -4558
to -3851) (CAS-TO: 07/30/2018, GCs -3850 to -3143)

detunings �0. The latter establishes a method to measuring the wavelength of the laser (in
combination with laser spectroscopy data), alternative to using a frequency comb for a direct
wavelength measurement.

Doppler shift and f0 reference

Magnetic field dynamics launch the cold atomic sample. Time-of-flight imaging records a
speed of roughly 1 m/s in the imaging plane, but cannot access the component perpendicular
to the imaging plane. The Stark-shifting beam necessarily propagates perpendicular to the
imaging plane, so a di↵erent method must probe the velocity component along the Stark
beam axis. Any velocity along that axis produces a Doppler shift that the atoms register in
the tune-out measurement, so it is imperative to determine the launch velocity component
along the Stark beam axis.

We first establish a spectroscopic baseline by performing cold-atom spectroscopy (CAS)
along an axis for which we know the Doppler shift, ẑ in the x� z imaging plane. We divert
the Stark beam via a magnetic mirror to an axis close to the Raman beam axis, which is
essentially parallel to ẑ

10, so we call it CAS-z.
We phase lock the Stark laser near the D1 line using a local oscillator frequency near

2700 MHz, quadrupled to the ⇠ 10-GHz 2P fine-structure splitting. The CAS-z beam
transmits through a polarizing beam splitter cube establishing a polarization very close to
x̂ ⇠ �

±. Scanning the laser wavelength exposes two resonances, |2S1/2, F = 2,mF = 0i !
|2S1/2, F = 1,mF = ±1i at lower laser frequency (higher local oscillator frequency) and
|2S1/2, F = 2,mF = 0i ! |2S1/2, F = 2,mF = ±1i at higher laser frequency (lower local

10There is a small, ⇠ 2� o↵set between ẑ and the CAS-z axis.
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oscillator frequency). We fit the excitations to the sum of two Lorentzians as Fig. 5.23
shows.

Just before or after spectroscopy, time-of-flight imaging measures the launch velocity
along z. The velocity determines the size of the Doppler e↵ect that shifts the resonances. To
determine the direction of the launch, we insert an object between the vacuum chamber and
the first imaging lens. Matching the object movement and the launch direction establishes
the launch direction to be North-to-South, opposite the propagation of the CAS-z beam. The
atoms therefore see the CAS-z beam shifted to the blue and they resonate at a frequency lower
than the true resonance. At vz ⇠ �1 m/s for 670.962 nm, we correct the CAS-z resonance
upward by ⇠ 2⇡ ⇥ 1.4 MHz.11 Correcting the optical frequency upward corresponds to
correcting the local oscillator (that sets the Stark laser’s detuning from the master laser)
downward. The Doppler-corrected resonance establishes the frequency f0 that detunings �0

reference. Averaging 14 measurements throughout the tune-out measurement campaign gives
a quadrupled local oscillator frequency of 2⇡ ⇥ (10669.72� 1.36) = 2⇡ ⇥ 10668.36(5) MHz.
The 0.05-MHz error is the standard error among the 14 Doppler-corrected measurements;
any errors due to drift in the master spectroscopy would manifest there. Referencing optical
detunings to this frequency for the tune-out measurement requires subtracting the tripled
local oscillator frequency 2⇡ ⇥ fLO that scans the laser about tune out.

�0 = 2⇡ ⇥ (10668.36� 3fLO) MHz. (5.27)

The Doppler-free spectroscopic baseline from CAS-z permits calibration of the Doppler
shift atoms see on the Stark-shifting beam axis in the tune-out measurement. We again tune
the Stark laser near the D1 line, but allow it to propagate along the tune-out path along
which it induces AC Stark shift gradients in the interferometer. This CAS-TO spectroscopy
records a resonance at 4fLO that is shifted by an average of 2⇡ ⇥ 1.58(6) MHz upward from
2⇡⇥ 10668.36 MHz in the same direction as the CAS-z resonance. The atoms must also see
the Stark-shifting laser blue-shifted. We therefore correct the measured tune-out frequency
upward by 2⇡ ⇥ 1.58(6) MHz to account for this Doppler shift.

Imperfect optical pumping

Cold-atom spectroscopy does not isolate |2S1/2, F = 2,mF = 0i. It interrogates the Zee-
man populations delivered to it by optical pumping: PmF=0 = 0.80(2), PmF=± = 0.00(2),
PmF=�2 = 0.16(2), and PmF=+2 = 0.04(2). The Zeeman e↵ect perturbs each state and its
transition energies. The shifts contributed by the mF = +2 and mF = �2 are equal and
opposite, but they do not cancel here due to the population asymmetry.

The shift due to 4% in mF = +2 cancels 4% of the 16% in mF = �2, leaving a 12%
asymmetry towards mF = �2 to induce a shift. The transition is Zeeman-shifted by the
di↵erence in Zeeman shifts in the ground and excited states. For the CAS-z x̂-polarized light,
only a �+ transition contributes from |2S1/2, F = 2,mF = �2i ! |2P1/2, F = 2,mF = �1i,

11Each of the 14 measurements is slightly di↵erent, so we only quote an approximate value here.
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Figure 5.24: Variation of tune out with polarization. The tune out measurement at several
angles of linear polarization traces out the variation due to the tensor polarizability. A fit
with free amplitude (blue line) returns a variation of 2⇡ ⇥ 56.8(4.7) MHz. Another fit has
its amplitude constrained to the theoretically predicted 2⇡ ⇥ 47 MHz (red dot-dot line).

reducing the potency by a factor of 2 since only half the total optical power contributes to
the transition.

The transition itself is perturbed by the di↵erence in Zeeman-shifted energies of |2S1/2, F =
2,mF = �2i and |2P1/2, F = 2,mF = �1i; the former with gF = 1/2 and the latter with
gF = 1/6. The transition is perturbed by �Ue��Ug = µB((1/6)(�1)� (1/2)(�2))(1.3)G =
~(+2⇡ ⇥ 1.52 MHz). Multiplied by the factor accounting for population asymmetry and
half the optical power, 0.06, the total shift to the spectroscopic baseline due to the Zeeman
population asymmetry is 2⇡ ⇥ 0.09(2) MHz. The transition frequency we measure is higher
than f0 by this amount, which makes detunings from it look too low, so we correct the final
reported tune-out detuning upward.

The shift due to uncertainty in the mF = ±1 populations is much smaller than this e↵ect,
so we do not consider it here.

5.6.3 Polarization

The polarization of the Stark-shifting light can have a significant impact on tune out. Di↵er-
ent polarizations couple with di↵erent strengths to the excited states. The di↵erence between
tune outs for |2S1/2, F = 2,mF = 0i using �± and ⇡ polarization is 2⇡ ⇥ 47 MHz, assuming
the theoretical matrix elements in Ref. [12].

Our experimental geometry allows for a nonzero projection of the Stark-shifting beam
onto ẑ. That precludes a perfectly ⇡-polarized beam. We can, however, achieve a pure
polarization along x̂, a linear combination of �±. Both �+ and �� produce identical tune-
out wavelengths for mF = 0. We therefore pursue �± polarization, which maximizes �TO.
A Wollaston prism outside the vacuum chamber ensures the polarization purity. Then, a
half wave plate at angle ✓�/2 and a quarter wave plate at angle ✓�/4 control the polarization
entering the chamber (see Fig. 3.36).
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Figure 5.25: Finding ⇡ polarization for the Stark beam. When the Stark-shifting beam
performs spectroscopy on the optical pumping transition, scattering is minimized when the
polarization most closely resembles ⇡ polarization at the minima of the curves above. (a)
shows the scattering minimum tuning the half-wave plate, while (b) shows the scattering
minimum tuning the quarter-wave plate. (�/2 scan: 07/25/2018, GCs -23780 to -23660)
(�/2 scan: 07/25/2018 GCs -23659 to -23539)

We can roughly set the polarization outside the vacuum chamber. To do so, we tem-
porarily insert a PBS cube just before the periscoping mirror that sends the Stark-shifting
beam into the chamber. Polarization along x̂ is nearly parallel to the optical table, so we
tune the waveplates to minimize the reflection at the cube. The minimum occurs at angles
✓PBS,�/2 = 6� and ✓PBS,�/4 = 4�. From this baseline, we perform tune-out measurements at
incremental values of polarization. We use the two-dimensional projective analysis for these
data, not the one-dimensional analysis. Each value may be systematically shifted, but we are
only interested in obtaining the amplitude of tune-out variation with polarization. Tuning
the half wave plate by 1� tilts the polarization by 2�, so for every angle we tilt the quarter
wave plate by twice as much to follow the half wave plate and preserve linear polarization.
The wave plate angles therefore respect a relationship ✓�/4 � ✓PBS,�/4 = 2(✓�/2 � ✓PBS,�/2) as
we scan the linear polarization.

Fig. 5.24 shows the variation in tune out with polarization. Because themF = 0 state has
no vector polarizability, the variation in this plot traces out the variation due to the tensor
polarizability. We fit the variation with a period constrained to 90�, since a 90� rotation on
the half wave plate restores a polarization. The red dotted fit assumes an amplitude equal
to the 2⇡⇥47-MHz variation predicted by theory, which is worse than the solid blue fit with
free amplitude. The free-amplitude fit returns a variation of 2⇡ ⇥ 56.8(4.7) MHz, 2-� larger
than the predicted value.

The free amplitude fit also suggests the wave plate angle that maximizes tune out, which
is the polarization that most closely matches x̂ ⇠ �

±. The maximum occurs at ✓0,�/2 =
12.4(1.0)�.

Setting the polarization outside the vacuum chamber may not be su�cient. Vacuum
viewports can exhibit significant birefringence that rotate the polarization [166]. The optical
pumping transition that forbids |2S1/2, F = 2,mF = 0i ! |2P1/2, F = 2,mF = 0i permits
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an in situ measurement of the polarization. Of course, probing that transition requires ⇡
polarization, 90� rotated from the �± polarization we seek. We may nevertheless perform
spectroscopy on the optical pumping transition using the Stark-shifting beam and rotate 90�

from there. The wave plate angles that minimize the scattering rate identify ⇡ polarization.
We perform CAS-TO on the |2S1/2, F = 2i ! |2P1/2, F = 2i resonance in Fig. 5.23 and

scan the wave plates to find ⇡ polarization. Fig. 5.25 shows the variation of the single-photon
scattering excitation for the |2S1/2, F = 2,mF = 0i ! |2P1/2, F = 2,mF = 0i transition as
a function of wave plate angles. The angles that minimize scattering are ✓OP,�/2 = 329.5(1)�

and ✓OP,�/4 = 289.6(1)�. We can achieve �± polarization by rotating the half wave plate
by 45� to ✓TO,�/2 = 14.5� and the quarter wave plate by 90� to ✓TO,�/2 = 19.6�. Because
this method probes the polarization in situ, we expect the results to be more accurate
than the previous method and use these wave plate angles for the 330,000-image tune-out
measurement campaign.12

We assume the error in our polarization is set by the discrepancy between the two meth-
ods: �✓�/2 = ✓TO,�/2 � ✓0,�/2 = 2.1(9)� and �✓�/4 = ✓TO,�/4 � ✓0,�/4 = 3(2)�. We treat each
error independently by assuming the half wave plate introduces only error in the angle of
linear polarization to x̂ and that the quarter wave plate introduces only an ellipticity. Tun-
ing the angle of the linear polarization can trace out the full 57-MHz polarization-dependent
variation between x̂ and ẑ. Coupling strengths depend on the square of the polarization com-
ponent magnitude. That is, the fraction of the optical power that contributes to the wrong
polarization follows the square of the projection, sin2. Further, 1� error on the half wave
plate translates to a 2� error in the polarization angle. The total uncertainty contributed by
the half wave plate is therefore sin2(2�✓�/2)2⇡ ⇥ 57 MHz = 2⇡ ⇥ 0.31 MHz. The quarter
wave plate can only produce half the full variation, since it tunes the polarization between
x̂ and an equal linear combination of x̂ and ẑ: sin2(�✓�/4)2⇡⇥ 57/2 MHz = 2⇡⇥ 0.08 MHz.
Their quadrature sum of the errors is 2⇡ ⇥ 0.32 MHz.

Reference [29] reports an e↵ort to monitor and control the polarization throughout the
tune-out measurement campaign. We assume the polarization is stable and do not make any
e↵ort to compensate for drifts.

5.6.4 Interferometer population impurities

Hyperfine impurity: complementary interferometer

The four-pulse Mach-Zehnder closes two interferometers that occupy di↵erent F during T
0.

The tune out of |2S1/2, F = 1,mF = 0i is larger than that of F = 2 by roughly the ground-
state hyperfine splitting ⇠ 804 MHz. We aim to measure only where F = 2 tunes out, so
we destroy the decoherence of the F = 1 interferometer by addressing it with MOT repump

12Also note that we do not include the data that contribute to Fig. 5.24 in the precision measurement
of tune out. Doing so would improve the precision on the tune-out measurement, but requires knowledge of
the tensor shift present at each point. Given the tension between our measurement and theory, we do not
attempt these corrections.
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light during T
0. The contrast of that interferometer decays with a time constant of 6.5(1.7)

µs (see Fig. 5.5). After the 70-µs pulse, a fraction e
�70/6.5 ⇠ 0.00002 of the F = 1 atoms

remains. Only half the atoms that would go on to interfere are recoiling in F = 1 during T
0,

while the other half are in F = 2, so only a total fraction of 0.00001 in F = 1 contributes to
the shift. The shift is 0.00001(2⇡ ⇥ 804) MHz ⇠ 2⇡ ⇥ 0.01 MHz. This signal would increase
the measured tune-out frequency, so we correct our measurement downward.

Zeeman impurity

Imperfect optical pumping sends Zeeman populations into the interferometer that are in
F = 2, but not the mF = 0 state of interest.

The mF = ±2 states where most of the Zeeman population impurity resides do not un-
dergo the interferometer. The Raman polarizations follow a lin-?-lin scheme with polariza-
tions close to (�++��)/

p
2 and (�+���)/

p
2. The only routes for |2S1/2, F = 2,mF = ±2i

to transition to F = 1 with circular polarization are to absorb a �⌥ photon from one Ra-
man beam (!2) and emit a �± into the other (!1), arriving at |2S1/2, F = 1,mF = 0i via
F

0 = 1 or F 0 = 2 on the D2 line. Because the hyperfine structure is unresolved on the D2

line, the ⇠200-MHz single-photon detunings of the Raman beams to F
0 = 1 and F

0 = 2
are approximately equal. Neglecting the di↵erence in detunings, the signs in the polar-
ization components and the signs in the Clebsch-Gordan coe�cients for the Raman routes
collaborate to prohibit the mF = ±2 states from undergoing a Raman transition.

Let us consider the mF = 2 case explicitly. Sec. 2.4.2 outlines the calculation. Given
lin-?-lin polarization, the components for the beam addressing |2S1/2, F = 2i ! |2P3/2, F

0 =
1, 2i are ✏ab,+1 = ✏ab,�1 = 1/

p
2 and those addressing |2S1/2, F = 1i ! |2P3/2, F

0 = 1, 2i are
✏bc,�1 = 1/

p
2 = �✏bc,+1. There are two Raman routes with nonzero Rabi frequency that

add to the total two-photon Rabi frequency:

(i) the atom absorbs a �� photon from |2S1/2, F = 2,mF = 2i to |2P3/2, F
0 = 2,m0

F = 1i
with ✏ab,+1 = 1/

p
2, then emits a �+ photon to |2S1/2, F

00 = 1,m00
F = 0i with ✏bc,�1 =

1/
p
2,

(ii) or the atom absorbs �� with ✏ab,+1 = 1/
p
2 to |2P3/2, F

0 = 1,m0
F = 1i, then emits �+

to |2S1/2, F
00 = 1,m00

F = 0i with ✏bc,�1 = 1/
p
2,

The products of the two polarization components and two Clebsch-Gordan coe�cients for

these routes are
⇣p

1/2
⌘⇣p

1/20
⌘
,
⇣p

1/2
⌘⇣p

5/24
⌘
,
⇣p

1/2
⌘⇣

�
p

1/12
⌘
, and

⇣p
1/2
⌘⇣p

1/8
⌘
, respectively. The sum of the Raman routes’ Rabi frequencies vanish:

(1/2)
⇣p

1/20
⌘⇣p

5/24
⌘
+ (1/2)

⇣
�
p

1/12
⌘⇣p

1/8
⌘
= 0. The routes are calculated simi-

larly for mF = �2. Since the total Raman Rabi rate vanishes for both states, they do not
undergo the interferometer and do not shift the tune-out result.

Now let us consider the mF = 1 state. It has five routes it can take to undergo a Raman
transition from |2S1/2, F = 2,mF = 0i to |2S1/2, F = 1i.
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(i) the atom absorbs a �+ photon from |2S1/2, F = 2,mF = 1i to |2P3/2, F
0 = 2,m0

F = 2i
with ✏ab,�1 = 1/

p
2, then emits a �+ photon to |2S1/2, F

00 = 1,m00
F = 1i with ✏bc,�1 =

1/
p
2,

(ii) the atom absorbs a �� photon from |2S1/2, F = 2,mF = 1i to |2P3/2, F
0 = 2,m0

F = 0i
with ✏ab,+1 = 1/

p
2, then emits a �� photon to |2S1/2, F

00 = 1,m00
F = 1i with ✏bc,+1 =

�1/
p
2,

(iii) the atom absorbs a �� photon from |2S1/2, F = 2,mF = 1i to |2P3/2, F
0 = 1,m0

F = 0i
with ✏ab,+1 = 1/

p
2, then emits a �� photon to |2S1/2, F

00 = 1,m00
F = 1i with ✏bc,+1 =

�1/
p
2,

(iv) the atom absorbs a �� photon from |2S1/2, F = 2,mF = 1i to |2P3/2, F
0 = 2,m0

F = 0i
with ✏ab,+1 = 1/

p
2, then emits a �+ photon to |2S1/2, F

00 = 1,m00
F = �1i with ✏bc,�1 =

1/
p
2,

(v) the atom absorbs a �� photon from |2S1/2, F = 2,mF = 1i to |2P3/2, F
0 = 1,m0

F = 0i
with ✏ab,+1 = 1/

p
2, then emits a �+ photon to |2S1/2, F

00 = 1,m00
F = �1i with ✏bc,�1 =

1/
p
2.

The polarization-component times Clebsch-Gordan product for each route respectively is

(i)
⇣p

1/2
⌘⇣p

1/12
⌘
⇥
⇣p

1/2
⌘⇣p

1/4
⌘
,

(ii)
⇣p

1/2
⌘⇣

�
p

1/8
⌘
⇥
⇣
�
p

1/2
⌘⇣p

1/24
⌘
,

(iii)
⇣p

1/2
⌘⇣p

1/40
⌘
⇥
⇣
�
p

1/2
⌘⇣

�
p
5/24

⌘
,

(iv)
⇣p

1/2
⌘⇣

�
p

1/8
⌘
⇥
⇣p

1/2
⌘⇣p

1/24
⌘
,

(v)
⇣p

1/2
⌘⇣p

1/40
⌘
⇥
⇣p

1/2
⌘⇣p

5/24
⌘
.

The sum of these factors is 0.144.
Performing a similar summation for the mF = 0 state yields a factor of 0.167. That

implies that the Raman Rabi frequency for themF = +1 state is a factor of 0.144/0.167=0.86
that of the mF = 0 state. We set the ⇡/2 pulse time using the Rabi frequency of the mF = 0
state. Each pulse transfers mF = 1 atoms with an e�ciency reduced by that amount and
there are four pulses. The relative contrast is therefore (sin2(0.86⇡/4)/ sin2(⇡/4))4 = 0.37
(multiplying the e�ciencies from Eq. (2.43) once for each pulse). That is, any atoms
undergoing the interferometer from mF = ±1 interfere with 37% the contrast of the mF = 0
atoms. Neglecting small changes due to the Zeeman shift [28], their tune out is shifted
downward by 2⇡ ⇥ 7.71 MHz.
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Figure 5.26: Intensity counts with a grating spectrometer. Calculating the power spectral
density requires recording raw spectra at an array of exposure times.

Recall that we do not actually detect any atoms in the mF = ±1 states after optical
pumping. We can, however, derive an uncertainty in the contribution of this state assuming
the 0.02 fractional uncertainty in the population from imaging noise and uncertainty in the
population estimation. While the fractional population in mF = ±1 is 0.02, half those
atoms are destined to follow the F = 1 complementary interferometer and decohere, so
only a fractional population of 0.01 might interfere. Each of the states adds an uncertainty
0.37 · 0.01 · (2⇡ ⇥ 7.71 MHz) = 2⇡ ⇥ 0.03 MHz. Adding the two mF = ±1 populations’
uncertainties in quadrature, we arrive at an uncertainty 2⇡ ⇥ 0.04 MHz.

5.6.5 Broadband emission

Diode lasers generally do not emit perfectly monochromatic light. The Stark ECDL we use
to measure tune out is no exception. The laser emits the majority of its optical power in the
lasing peak, but it also emits a small fraction of the total power over a large bandwidth. The
broadband emission is called amplified spontaneous emission (ASE) [167]. Each component
of that spectrum contributes to the total Stark shift and the gradient that the interferometer
samples for the tune-out measurement. Even when the lasing peak sits at tune out, the
remnant Stark shifts from the rest of the ASE spectrum could contribute a nonzero signal
that systematically shifts our result.

We record the spectrum of the laser with a grating spectrometer (Princeton Instruments
Acton SpectraPro SP-2300 with PIXIS 400 CCD, borrowed from Norm Yao’s group). The
dynamic range of the camera is too small to measure the spectrum across the requisite range
of power spectral densities.

We build the power spectral density (PSD) by covering the spectrometer in a dark curtain
to block room light, attenuating the laser light, and then exposing the spectrometer for an
array of times, each twice the previous: 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120,
10240, 20480, 40960, and 81920 ms. Five repetitions through this scan of exposures help to
smooth out noise. Fig. 5.26 shows four of the exposures. The highest exposures saturate
the detector around the lasing peak but provide valuable information about wavelengths at
very low PSD. Low exposures provide information about the power in the lasing peak before
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Figure 5.27: PSD of neon calibration source. The recorded PSD of a neon calibration source
shows pathologies (black arrows) that are conserved across monochromatic peaks.

it saturates the detector. Stitching together the scans into a PSD requires some processing.
We first subtract the value from an averaged scan of the spectrometer in the dark to find
the counts above the noise floor at each wavelength.13 We identify the valid points in each
scan as the wavelengths whose counts lie comfortably between the detector’s noise floor and
saturation. For those points, we divide the higher-exposure scan’s count by 2 (the relative
factor between adjacent exposures) and average the two values. Across the five repetitions
of this kind of scan, we choose the median of each value.

We report the power in dB relative to the carrier (dBc). Doing so requires summing the
counts in the carrier peak across the noise bandwidth of the detector to get the total peak
counts. Then we divide each count by the peak count and divide by the resolution bandwidth.
Taking 10 log

10
of those values gives the PSD in dBc/nm. Though the resolution bandwidth

(RBW) of the spectrometer is 0.022 nm, errors in the imaging system spread photons across
a series of pixels. Notice the two artifacts conserved across each peak of a neon calibration
source in Fig. 5.27. The artifacts imply that the grating spectrometer’s imaging system
distributes the photons of a single peak across a range of pixels spanning ⇠1 nm, the noise
bandwidth. We therefore calculate the carrier counts by summing all counts within a 1-nm
window and normalize to that value to report a dBc.

Fig. 5.28 shows the resulting PSD for the Stark-shifting laser. Because the noise band-
width spans ⇠1 nm, we consider PSD within a 1-nm window around the peak to originate
from lasing peak itself. We truncate the lasing peak across the noise bandwidth and consider
the remaining spectrum the PSD of the ASE.

For a total laser power P , the power at wavelength � is P10PSD(�)/10(RBW). The associ-
ated systematic shift is the sum of interferometer phase di↵erences (ala Eq. 5.6) induced by
the power at each wavelength in the spectrum. We compare the result for the laser peak’s
detuning �0 at which the phase shift for z = wz/2 crosses through zero both with and with-
out this extra phase shift contributed by the ASE. The ASE shifts the zero crossing upward
by 2⇡⇥ 0.09 MHz, so we correct our final result downward by that amount. This systematic
is independent of total laser power, but does depend on the wavelength calibration of the
spectrometer and errors that result from how we stitch together the array of exposures. A

13The average dark counts are around 590, the subtle vertical o↵sets in Fig. 5.26.
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Figure 5.28: PSD of Stark ECDL. We truncate the lasing peak (thin purple) across a window
the size of the spectrometer noise bandwidth and calculate the total systematic Stark shift
contributed by the remaining spectrum (thick black).

Figure 5.29: Electronic beat note of Stark laser. The laser has a symmetric spectrum and
full-width-half-max linewidth of 1.4 MHz. (07/02/2018)

2⇡⇥0.1-MHz uncertainty in this systematic originates from the spread of shifts we calculate
within an expected range of wavelength and power calibration errors.

The grating spectrometer only accesses information outside a 1-nm window from the
lasing peak. Any irregularities in the laser spectrum within that window could contribute
large systematics, especially if there are asymmetries across the D-line resonances. The
electronic beat note in the phase lock does provide information very close to the lasing peak,
as Fig. 5.29 shows, but also does not spawn any concerns.

In principle, even a symmetric laser peak could couple asymmetrically to the D lines.
Since tune out is not equidistant to each line, the coupling strength / 1/� varies at di↵erent
rates for each of the lines on either side of the lasing peak’s center. The laser inherits a 1.4-
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MHz linewidth from the master laser lock, small enough compared to the fine-structure
splitting to quell worries about these kinds of asymmetries.

A final class of suspicions may lie between the regimes above. The spectrometer’s noise
bandwidth is too large to probe any spectral features near or within the D lines and any
record of the beat note in the phase lock is too narrow. If there were any anomalous features
in the laser spectrum close to the D-line resonances, it could have introduced systematic
asymmetries in the coupling. We cannot rule out this possibility definitively, though no
signs point to such anomalies. For example, there are no anomalies in the D1 spectroscopy
scans in Fig. 5.23. Rogue peaks in the laser spectrum could have manifested there as
excitations that appear removed from the resonances. Even the nonzero slope of the ASE
around the resonances could be unsettling. Calculations with Eq. (2.57) confirmed that the
slope of the ASE is small enough that the coupling remains symmetric enough about the
resonances that any contribution to the Stark shift just above a resonance e↵ectively cancels
an equal and opposite contribution just below the resonance.

5.6.6 Phase lock stability

Throughout the tune-out measurement, we use the local oscillator frequency in the phase
lock as a proxy for the Stark laser wavelength. It establishes f0 as a detuning from the
master laser and all detunings �0 that parameterize the laser wavelength reference it. If the
lock tone in the phase lock varied with the local oscillator frequency, then the local oscillator
frequency would not be a good metric. An early version of the lock with a frequency-o↵set
“trombone” lock varied by up to several MHz as a function of local oscillator frequency. The
phase lock, in blissful contrast, is stable to 10 kHz, around 79.69 MHz.

5.6.7 E↵ects that contribute insignificant shifts

Some e↵ects in this section could contribute systematic e↵ects, but we reason here that the
e↵ects are negligible. Other e↵ects could be significant, but would not systemically shift our
result – for example, the Sagnac e↵ect shifts the overall phase of the interferometer so as to
be calibrated into fm. We include examples of both these e↵ects to anticipate any questions
readers may have.

Mechanical dipole forces

The AC Stark shift creates a potential that follows the intensity profile of the beam just like
a dipole trap. The gradient in the potential produces a force Fz = �dU/dz that can kick
the atoms over the interaction time with the Stark beam. At x = 0 where the gradient and
this kick is largest,

F = �~�2
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The magnitude of the force is maximal at z = wz/2. The acceleration a = F/m that acts
on the atom for the pulse length ⌧ =0.1 ms to produce a displacement a⌧ 2/2 that is merely
⇠0.5 microns at maximum.

This displacement is not the same in character as the displacement from scattering that
motivated the one-dimensional analysis. That was a displacement of the dipole signal pattern
relative to a monopole scattering pattern. Here, the displacement would be a common
perturbation to both the dipole and monopole positions. Furthermore, the e↵ect is symmetric
about the center of the cloud. When the total Stark shift is negative (positive), atoms drift
into (away from) the center of the beam.

Sagnac

The sample’s launch velocity is not parallel to the interferometry axis. That means that
the interferometer arms do enclose a spatial area during the interferometer. A small Sagnac
phase enters, but it is common to the entire sample and only potentially changes how we
tune fm to set the bias phase of the interferometer. It does not a↵ect the measurement.

Hyperpolarizability

The hyperpolarizability vanishes at tune out, at least for a three-level system14. On the other
hand, our wavelength scan is not symmetric about tune out and the hyperpolarizability shift
is nonlinear. That leads to the possibility that the hyperpolarizability shifts the points more
strongly on one side of the scan, systematically shifting the zero crossing of the fit.

Fig. 2.13 presents an approximation of the hyperpolarizability we expect in our system.
We accounted for the Clebsch-Gordan coe�cients for our state and polarization by summing
the squared Clebsch-Gordan coe�cients across allowed transitions on each line, neglecting
di↵erences in detuning from the small excited-state hyperfine splittings. The squared co-
e�cients sum to 1/3 for both the D1 line and the D2 line, so we suppressed each squared
dipole matrix element in that calculation by 1/3. That reduces the polarizability by a factor
of 3 and reduces the hyperpolarizability by a factor of 9, compared to the result for the full
transition dipole matrix element.

Our measurement technique is sensitive to gradients in the hyperpolarizability. The peak
shift for our maximum detuning is ⇠20 Hz at the center of the beam. For a 10-µm arm
separation on a 150-µm beam, the interferometer would sample a maximum 2-Hz di↵erence
in the hyperpolarizability shift at wz/

p
8 where the slope of the hyperpolarizability is highest

on the I
2 profile.

20 Hz
⇣
(exp(�2((0.15/

p
8 + 0.01) mm)2/(0.15 mm)2))2

� (exp(�2(0.15/
p
8 mm)2/(0.15 mm)2))2

⌘
⇠ 2 Hz. (5.29)

14While the atomic system has many more than three levels, the transitions outside the three-level system
are so far o↵-resonance that they modify this result only negligibly.
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The interferometer would accrue 0.001 radians of phase over the 100-µs Stark-shifting pulse.
Now we consider how large of a systematic shift that produces. The prediction for

the polarizability in Fig. 2.13 suggests a ⇠100-kHz polarizability shift. The 10-µm arm
separation samples a 10-kHz di↵erence on the intensity profile, accruing ⇠ 2⇡ radian of phase
over the 100-µs pulse.15 These phase shifts are estimated near our maximal detuning from
tune out, around 400 MHz away. The largest shift the hyperpolarizability could introduce
would be

400 MHz

2⇡ rad
(0.001 rad) ⇠ 0.06 MHz. (5.30)

While this is in the regime of shifts we consider, the real shift will only be much smaller than
this for multiple reasons. First, the hyperpolarizability only a↵ects points far away from
tune out. It would introduce a curvature to the fits and a contribution to a cubic term in the
fit. We fit the signal amplitudes with both cubic (Fig. 5.22) and linear (Fig. 5.21) functions
and showed that the cubic term was not important. Second, thermal dephasing a↵ects the
smaller length scales of the hyperpolarizability’s I

2 profile more strongly than that of the
Stark shift. The 2 Hz we calculate above is for an atom at rest at the most sensitive position.
The Stark shifts predicted are highly optimistic and the experimentally relevant phase shifts
are much smaller.

5.7 The result

Tab. 5.2 collects the significant systematic e↵ects, uncertainties, and the fit result.

5.7.1 Comparison to theory

The measurement result is most interesting contextualized by contemporary atomic theory.
Reference [12] calculates lithium’s dipole matrix elements for the purpose of finding tune-
out and magic wavelengths. It uses a fine-structure basis to calculate tune out for |2S1/2i.
Hyperfine e↵ects are important to our spin-polarized measurement for tune out of |2S1/2, F =
2,mF = 0i, so we must perform our own calculation using the transition dipole matrix
elements the theorists calculated16 using experimental transition energies.

dD1 = 3.3169(6) a.u. = 2.8122(5)⇥ 10�29 C ·m (5.31)

dD2 = 4.6909(8) a.u. = 3.9771(7)⇥ 10�29 C ·m. (5.32)

15We report elsewhere that the maximum phase shift we observe is more like ⇡/10 radians. That is
something of an estimate, averaged over the signal across the thermally-dephased signal. Here, we are
considering the absolute maximum phase shift any single atom could accrue and comparing that condition
for both for the polarizability and the hyperpolarizability.

16Here we remain vigilant and notice that the dipole matrix elements contain a factor of
p
2Jl + 1. These

matrix elements are not in disagreement with the values reported in Tab. 2.2, they just use an inconveniently
di↵erent convention.
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E↵ect Correction 1-� uncertainty

Doppler shift along Stark beam axis (5.6.2) +1.58 0.06
Broadband laser emission (5.6.5) �0.09 0.1
Complementary F = 1 interferometer (5.3.4, 5.6.4) �0.01 0.04
Interference from mF = ±1 interferometer (5.6.4) 0.09
Zeeman shift to measured f0 (5.6.2) +0.09 0.02
Statistical uncertainty in measured f0 0.05
Polarization impurity (5.6.3) 0.3
Total +1.59 0.34

One-dimensional fit (5.6.1) 3327.95 1.40

Final result 3329.54 1.44

Table 5.2: Tune-out measurement systematics. Systematic e↵ects in measuring 7Li’s tune
out for |2S1/2, F = 2,mF = 0i with �± (x̂) polarization. Parentheses after each e↵ect refer
to the germane section. The detuning references the |2S1/2, F = 2i ! |2P1/2, F

0 = 2i
transition. All frequencies are given in MHz divided by 2⇡.

The conversion factor between atomic units and SI is (1 = 8.47836⇥ 10�30 C·m/a.u.).
To compare our measurement to theory, we use these theoretical matrix elements to

calculate where the AC Stark shift or the polarizability vanish. There is no need to consider
the gradiometer configuration of our interferometer because the gradient vanishes if the total
shift vanishes. One may either build a calculator to find the zero crossing either by using
Eq. (2.137) and Clebsch-Gordan coe�cients or by using a cascade of Eqs. (2.139), (2.140),
(2.141), (2.142), and (2.143). Each should specify to a particular hyperfine Zeeman sublevel
and light polarization. The two approaches should produce identical results, up to di↵erences
due to the RWA that have no import here. Validating these calculators’ predictions against
the Rb measurement in [28] and [29] (using Rb’s parameters for dipole matrix elements and
transition energies) helped assuage our trepidations about us experimentalists performing
calculations.

Higher n > 2

There are some important di↵erences between our calculator and the full theory. First, we
do not consider transitions to principle quantum number higher than n = 2. We consider
only the |2S1/2i ! |2P1/2i and |2S1/2i ! |2P3/2i transitions. We did modify the calculator
to account for the n = 3 transitions with17

d2S1/2!3P1/2 = 0.183(3) a.u. (5.33)

d2S1/2!3P3/2 = 0.259(4) a.u.. (5.34)

17Again, these values have the factor of
p
Jl + 1 built into them.
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and experimental transition energies from the NIST database [120], but the inclusion had
no e↵ect near our level of precision. This is likely due to the minuscule detunings of tune
out to the D-lines relative to all other transitions in lithium. We can amplify the e↵ect by
a factor of 100 by multiplying the dipole matrix elements by a factor of 10 (also multiplying
the corresponding linewidths by 10 if they are defined separately), which produces a shift of
20 kHz, so we estimate the e↵ect of the n = 3 levels to produce a shift at the 0.2-kHz level.
As in Rb [29], the nearest n level dominates the polarizability contributed from higher n.
Since even n = 3 produces no observable shift, we do not consider higher n.

Core polarizability

Second, we do not account for the polarizability of the core electrons. Transitions out of
the core are higher in energy than any frequency that addresses the valence electron. The
red 671-nm light we use to measure tune out appears as essentially DC to the core and
we may approximate the core polarizability with the static core polarizability. Ionizing
lithium exposes the core, so the core polarizability of Li is approximately equal to the static
polarizability of Li+ [16]:

↵c = 0.1883(20) a.u. (5.35)

We account for this by simply adding this static core polarizability to the total polarizability
in our calculator. It does not shift the zero crossing near our level of precision. We can
estimate the e↵ect by multiplying this factor by 100 to observe a 10-kHz shift. That implies
that the core polarizability shifts tune-out at the 0.1-kHz level. There also exist core-valence
interactions that we do not consider. They appear at a level in Rb a factor of 10 smaller
than even the higher n contributions.

Zeeman shifts

Including Zeeman shifts merely changes the transition energies and detuning factors in the
polarizability calculation [28]. Because we use a light polarization that is an equal combina-
tion of �+ and �� polarizations, Zeeman shifts to transitions are equal and opposite for the
two components, so their e↵ects roughly cancel. Furthermore, we use a relatively small bias
field in our experiment produces only ⇠ 1-MHz transition energy shifts. Increasing the field
strength by a factor of 10 in the calculations produces a shift near 10 kHz, so we expect this
e↵ect to enter at the 1-kHz level.

Multipole transitions

The atomic theory we use does not account for transitions beyond the dipole transitions
of the electric dipole approximation. Atoms do couple to higher-multipole components of
the electric field, which can drive quadrupole, octupole, etc. transitions. Those transitions
follow di↵erent selection rules. For example, quadrupole transitions do not couple the S

states to higher S or P states. The 3D states are detuned far enough from the Stark laser
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Figure 5.30: Variation of tune out prediction with polarization angle. The green line shows
the prediction for scalar tune out.

frequency not to worry us. Multipolar e↵ects on the polarizability and hyperpolarizability
are discussed in Refs. [109, 110, 105].

Predictions

With the theoretical matrix elements above and experimental transition energies [115], we
predict that |2S1/2, F = 2,mF = 0i tunes out with �±-polarized light at

�TO±,th = 2⇡ ⇥ 3323.52(1.3) MHz. (5.36)

For ⇡-polarized light,
�TO⇡,th = 2⇡ ⇥ 3276.47(1.3) MHz. (5.37)

The F = 1 state tunes out for �±-polarized light at

�TO±,th,F=1 = 2⇡ ⇥ 4130.08(1.3) MHz, (5.38)

806.56 MHz above where F = 2 tunes out. Note that the di↵erence is not exactly equal to
the ground-state hyperfine splitting.

5.7.2 Tensor tension and scalar agreement

Our tensor-shifted tune-out measurement at 3329.5(1.4) is in 3-� tension with the theory
prediction 3323.5(1.3). Furthermore, we observe a 2-� tension in the magnitude of variation
in tune out between the tensor-shifted tune outs of �± and ⇡ polarizations; we measure a
variation of 56.9(4.7) MHz compared to theory’s 47.1(1.3) MHz prediction.

The variation of tune out with polarization for the mF = 0 state arises solely from the
tensor polarizability. We calculate tune out for several linear polarizations at an angle to the
x axis. Fig. 5.30 shows the results. The variation follows a (3/4) cos2(✓)� (1/2) dependence
(see Eq. (4) of Ref. [29]). It is not symmetric about the value where the scalar polarizability
alone crosses through zero, ↵s(�s

TO
) = 0.

�s
TO,th = 2⇡ ⇥ 3308.05 MHz. (5.39)
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The tensor-shifted tune out for �±-polarized light is 1/3 of the full tensor variation above
the scalar tune out.

We can combine our measurement of the tensor-shifted tune out of |2S1/2, F = 2,mF = 0i
for �⇡-polarized light with our measurement of the variation of tune out with polarization
to

�s
TO

= 2⇡ ⇥ (3329.5(1.4)� 56.9(4.7)/3) MHz = 2⇡ ⇥ 3310.5(4.9) MHz, (5.40)

which agrees with theory. Inputting our measured value of the tensor shift produces better
agreement than if we were to use the theoretically-calculated value.

Speculation

Our measurement of the tensor-shifted tune out and the full magnitude of the tensor shift
both disagree with theory, but our measured value of scalar tune out agrees with theory.
This suggests that the disagreement may be due to a polarization-related e↵ect, either in
the theory or in the experiment.

We o↵er one possibility for a polarization-related e↵ect we did not account for. We
measure the variation of tune out with polarization by tuning the angle of the polarization
with respect to the x axis (Fig. 5.24). The polarization of the ASE or any power-spectral
anomalies also vary in those measurements. If there were a feature in the Stark laser’s
PSD close to one of the resonances that we were unable to identify, its polarization would
have varied in that scan. The Clebsch-Gordan coe�cients that describe that such a feature’s
coupling to the resonances have a strong polarization dependence, some completely vanish at
certain polarizations and not at others. Thus, there could be a spectral feature near resonance
with a strong polarization dependence that introduces an undetected systematic into our
56.9(4.7)-MHz measurement of the full tensor variation. Such a feature would also have
introduced a Stark shift contribution that systematically shifts our precision measurement
tune out for �± light. We have no reason to suspect that the Stark ECDL emits such a
spectral feature, but dutifully report this as a possible source of undetected error.
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Chapter 6

Prospecting

6.1 A polarizing future

6.1.1 Measuring hyperpolarizability

One of lithium’s advantages in measuring the tune-out wavelength is the small 2P fine-
structure splitting that produces a highly-sloped polarizability near tune out. That large
slope allows for proportionally increased precision in measuring tune out. The hyperpolariz-
ability must also be relatively highly-sloped near tune out due to the fine-structure splitting,
permitting a tantalizing opportunity to measure it.

Hyperpolarizability produces energy shifts proportional to the square of light intensity.
This has become important physics with the advent of optical lattice clocks [168], in which
experimenters extend the interrogation time of an atomic clock by trapping atoms with
long-lived excited states in an optical lattice. These versatile experiments can turn an eye
toward an impressive array of important physics, from many-body physics to searching for
dark matter candidates through time-variation of fundamental constants.

Ordinary lattice light would systematically perturb the precious clock transition, so sci-
entists choose a magic wavelength for the trap. The two clock states have equal polarizability
at a magic wavelength, so the transition should be unperturbed. It is unlikely, however, that
the two states have equal hyperpolarizability at the magic wavelength, producing a shift
to the transition that depends on the intensity of the trapping light. Hyperpolarization in
lattice clocks can introduce a systematic shift to the clock transition, as well as broadening
due to fluctuations in intensity or due to the varying intensity with the trap topography.
The broadening in particular may become a leading uncertainty for these experiments.

Lattice clock experiments have investigated the e↵ects of hyperpolarizability before [104,
105, 106, 103] and it remains an active field of inquiry [108, 107, 145]. Theorists have also
attended to these shifts, but disagreements between theory and experiment remain [110,
109]. Precision measurements of hyperpolarizability in lithium could be indispensable in
remedying the disagreement between theory and experiment.

Measuring the hyperpolarizability in our experiment is challenging. At tune out, its
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Figure 6.1: Dual-wavelength hyperpolarizability scheme. A light field with equal power at
two wavelengths (black circles) samples equal and opposite polarizabilities and the total
polarizability shift cancels (gray box). The hyperpolarizability shift does not fully cancel.

e↵ect vanishes. Away from tune out, its shift sits atop a large background signal from the
polarizability. The lattice clock community tends to scan the intensity of the trap light and
look for and a variation in the clock frequency that is quadratic in the intensity. Here, one
could consider measuring tune out at several values of intensity and looking for a quadratic
variation in the measurement sensitivity, or the slope through tune out. This strategy is
possible, but unlikely to be particularly sensitive because the hyperpolarizability is so small
near tune out. It would be better to tune the laser further away from tune out where the
hyperpolarizability is larger. Of course, the polarizability is also larger, so a scheme that
rids the signal of the e↵ects of polarizability is preferable.

Here we o↵er a scheme to cancel the polarizability’s e↵ect and leave only the e↵ect of
the hyperpolarizability. Consider a light field with equal power at two di↵erent wavelengths,
wavelengths chosen such that the polarizability is equal and opposite for each of them. The
wavelengths are not precisely symmetric about tune out because the polarizability varies
nonlinearly and asymmetrically away from tune out. We send this light field at the atoms
in the same manner we have done with our phase-patterned tune-out measurement. Be-
cause the two wavelengths contribute equal and opposite polarizabilities and the powers
are matched, there is no total polarizability shift. The more dramatic nonlinearity for the
hyperpolarizability, however, means that the e↵ect of the hyperpolarizability does not fully
cancel. A signal proportional to the di↵erence between the two wavelengths’ hyperpolariz-
ability survives. It is not ideal that hyperpolarizability’s e↵ect largely cancels, but it is likely
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Figure 6.2: Dual-wavelength hyperpolarizability optics setup. Two quadruply-passed AOMs
generate two wavelengths of light whose polarizability cancels, but whose hyperpolarizability
does not.

worth cancelling the large background from the polarizability.
Fig. 6.1 shows the energy shifts in a three-level model from polarizability and hyperpo-

larizability at each wavelength in this scheme. We have retained the beam parameters for
this plot, but have increased the power by a factor of 10. Increasing the power by a factor
of 10 amplifies the polarizability shift by a factor of 10 and amplifies the hyperpolarizability
shift by a factor of 100. One might accomplish this with an optical setup similar to Fig.
6.2. The Stark ECDL would seed a standard 500-mW, 671-nm TA. The output of the TA
should be spectrally filtered with a grating and pinhole because the ASE from a TA will be
much stronger relative to the carrier compared to an ECDL’s direct output. An optical fiber
may spatially filter the mode before the beam divides into two and double-passes through
two AOMs in opposite directions. Two quadruply-passed 400-MHz AOMs would generate
light with ⇠3 GHz splitting. A 50/50 beam splitter would recombine the beams at identical
polarization and send them along the tune-out measurement path. This should deliver ⇠10
times our current ⇠ 3-mW power in each wavelength. Another route to well-matched powers
in each wavelength may be to pass the beam through an EOM and drive sidebands that serve
as the two wavelengths. There are several disadvantages like the carrier not being precisely
at tune out and higher-order sidebands sitting near the atomic resonances, but it may be
worth further consideration.

Assuming the tuning perfectly cancels the polarizability, the phase shift is proportional to
the di↵erence in the hyperpolarizability between the two wavelengths. We choose detunings
from the modeled D1 line near 2125 MHz and 5130 MHz. The di↵erence in the points’
hyperpolarizability gives a di↵erential remnant di↵erence in hyperpolarizabilities of ⇠ 3.5⇥
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1020 a.u. and a remnant peak shift of ⇠ 2⇡ ⇥ 7 kHz. The interferometer with will sample
the gradient in the squared intensity profile, yielding a maximal di↵erence of ⇠ 2⇡ ⇥ 1 kHz.
That gives a substantial peak phase di↵erence near 2⇡. This peak phase di↵erence is for
an atom at rest at the most sensitive position. While the observable phase shifts will be
smaller due to thermal dephasing, this is similar to the phase shifts we measured for tune
out and should be easily accessible with similar averaging. There is a di↵erence between
the phase pattern in our tune out measurement and the phase pattern this would imprint;
the hyperpolarizability shift follows the squared intensity profile, so the pattern will be

p
2

smaller in size. The size of the pattern in our tune-out measurement was manageable enough,
so we do not expect the imaging or thermal dephasing would pose unique challenges to the
slightly smaller feature at our current beam size.

The approach here faces multiple obstacles. First, scattering will be an even larger issue
in this scheme because the detunings we suggest more closely approach the D1 resonance.
One could take the same modulated approach as our tune-out measurement, taking the
di↵erence between pulsed and unpulsed images for two opposite sensitivities, and subtracting
the two residual images. It is important to recognize that scattering remained an issue for
us regardless of our attempts to cancel it (and for unknown reasons), so it could present a
larger hurdle here. Second, it is not obvious how to take the signal we propose here and
turn it into an absolute measurement of a nonzero hyperpolarizability. Obtaining the signal
in the first place would likely motivate folks to solve this problem.

6.1.2 Ultraviolet tune out

The next tune-out wavelength in 7Li sits between the |2S1/2i ! |3P1/2,3/2i ultraviolet transi-
tions near 323 nm. That tune out is arguably far more interesting than the 671-nm tune-out
wavelength. First, relativistic e↵ects begin to come into play, as discussed in Ref. [114].
Second, the hyperpolarizability becomes more interesting.

Recall that hyperpolarizability is the result of four-photon processes. The perturbation
may ride two photons upward and two photons back downward to the perturbed state. For
the red tune out, the two-photon transitions upward are still quite far from resonance with
the |3Si and |3Di states, so the hyperpolarizability contains huge (cancelling) contributions
from the up-down-up-down processes via the |2P i states and almost no contribution from
any up-up-down-down process.

The story is radically di↵erent for the ultraviolet tune out. Two photons at 323 nm excite
the valence electron in 7Li beyond ionization. That means the up-up-down-down processes
couple resonantly into a continuum of unbound, free-electron states. That is a far more
exciting problem for many theorists than precise computations of features on the D lines.1

There is considerable disagreement in the community about how to treat this and theorists
are still working to develop methods that properly account for this kind of behavior [95]. A

1D stands for Dull, amirite?
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direct measurement of hyperpolarizability e↵ects around the |2Si ! |3P i transitions would
provide tremendous insights that theorists would undoubtedly find valuable.

Entertaining the ultraviolet tune out requires considering optics that properly transport
the ultraviolet light. Generating the light and working with it also opens the door to cooling
lithium on the |2Si ! |3P i line, which is much narrower and o↵ers temperatures approaching
50 µK [113]. Parallelizing e↵orts for deeper cooling, measuring tune out, and measuring
hyperpolarizability in the ultraviolet should make this an attractive direction.

6.1.3 Tuning out 6Li

Theorists have worked to account for isotopic di↵erences between 6Li and 7Li and have
expressed a keen interest in investigating the shift between their tune outs [12] and hyper-
polarizability [18, 169].

Many of our 7Li techniques would carry over to 6Li. Adding the capability to work with it
is a straightforward, albeit time-consuming, endeavor. The cooling and trapping light for 6Li
is near theD1 line of 7Li. Most of the lasers we use for 7Li can therefore be used for addressing
either isotope. The master laser spectroscopy would first need to modified to enable switching
to locking at a 6Li reference instead of only the 7Li resonance it currently supports. That
requires including an isotopically-enriched sample with a substantial fraction of 6Li in both
the spectroscopy cell and the main chamber. The ground-state hyperfine di↵erence in 6Li is
only ⇠230 MHz, nearly 4 times smaller than that of 7Li. The same AOMs we use to generate
the cooling and trapping light for 7Li could not be repurposed for 6Li. Instead, a cascaded
AOM scheme with 80-MHz double-passed AOMs after the 200-MHz AOMS we currently use
for 7Li could switch to cooling and trapping 6Li by simply extinguishing the 7Li AOMs and
turning on those for 6Li. The beam paths would otherwise be identical. We have observed
the TAs to be rather particular about their tuning, so it may be necessary to retune them
(and potentially the slave lasers) upon switching between isotopes.

Perhaps the largest challenge to working with 6Li is its hyperfine structure. 7Li volunteers
a magnetically-insensitivemF = 0 state. 6Li does not, with F = 1/2, 3/2 in the ground state.
One might consider optically pumping to each of the |2S1/2, F = 3/2,mF = ±3/2i with �±-
polarized light on 6Li’s D2 line, but the pumping would be ine�cient. Measuring tune out
for each of the states could cancel linear Zeeman e↵ects, but it might require controlling the
magnetic gradients better than was required in our mF = 0 work.

6.1.4 An independent tune-out wavelength measurement

Our measurement registers a tension with theory. While our measurement is the first of a
tune-out wavelength in lithium, other apparatuses routinely produce ultracold samples of 7Li
[170, 171, 172, 173, 174, 175, 176] and 6Li [177, 178, 179, 180, 181, 182] and any one of them
may be positioned well to precisely measure of the lithium tune-out wavelength. We extend
a warm invitation to these ultracold experiments to perform an independent measurement
that would provide a check on both our methods and theory.
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6.1.5 Polarizability reference species

Lithium’s relatively simple electronic structure imbues calculations of its polarizability with
more precision than other species. An experiment in Ref. [164] used K as a reference species
to determine the polarizability of Dy, a more exotic species. They simultaneously trap both
species in an optical dipole trap; suddenly displacing the trap center excites mechanical
oscillations at a frequency proportional to the square root of the polarizability. Using the
well-known polarizability of the reference species and its measured oscillation frequency
allows a measurement of the exotic species’ polarizability through its oscillation frequency.
Such a procedure might be adapted instead for Li, whose polarizability is the most precisely
calculable of the alkalis. One could imagine a cottage industry of precisely measuring species’
polarizabilities against Li.

6.2 Extensions and applications of phase patterning

We developed phase patterning out of necessity to measure 7Li’s tune-out wavelength with
a thermal sample. In doing so, we stumbled on a much more broadly applicable technique.
Phase patterning enables control or sensing of spatially-varying interferometer phases. While
we leveraged it for a sample with thermal speeds much higher than the recoil speed, it is
generally applicable to any experiment where the arm separation is smaller than the size of
the sample along a particular axis, which could be a necessity or a design choice. In our
tune-out measurement, the interferometer sampled an intensity gradient to generate a phase;
away from tune out, there was a spatially-labeled AC Stark shift and phase di↵erence. We
also imagine similar applications where the intensity itself directly patterns phase profiles
using the di↵erential polarizability of superposed states. We now dream of a few options for
how else phase patterning might be useful.

6.2.1 Correcting systematic phase gradients

Our recoil measurement was frustrated by a phase gradient imprinted on the interferometer
by the magnetic field gradient. Atoms at one end of the sample accrued more 2�T phase than
atoms at the other end of the sample. The signals dephased and decohered when summing
the interferometer output signal over the sample, as is most convenient and sensitive. We
could have corrected the component of the phase gradient along the interferometer axis by
applying an intensity gradient across the sample during T

0. To compensate for the phase
gradient, the light could be tuned to a wavelength with a high polarizability where modest
light intensity produces substantial gradients.

Experiments that produce large spacetime separations may sample regions of the vacuum
chamber distinct in their gravitational [183], magnetic [184], or thermal environments [6, 4,
5]. Gradients in these fields may imprint a spatially-varying phase shift on the interferometer
that spatially dephases the interferometer singal. Phase patterning can compensate for
these systematic dephasing mechanisms. For example, consider a four-pulse Mach-Zehnder
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Figure 6.3: Phase patterning during a lattice hold. The green central pulse represents a
lattice that drives Bloch oscillations to hold an atom against gravity. The purple pulse
therein represents a phase patterning pulse that compensates for systematic gradients.

interferometer that allows the interferometer to accrue phase in place during T
0 by holding

them in a lattice as in Ref. [185, 186]. Any curvature in the blackbody power spectral
density across the matter-wave separation imprints a phase that depends on the height of
an atom within the sample.2 Such a phase gradient could be compensated by applying
a phase patterning pulse during the lattice hold as Fig. 6.3 shows. One would choose a
laser wavelength with nonzero polarizability and design the intensity profile to imprint a
height-dependent phase di↵erence.

Phase patterning does not require the arms of an interferometer to sample an intensity
gradient. A phase-patterning pulse may alternatively address state-labeled trajectories with
a di↵erential polarizability. The local intensity, rather than the local intensity gradient,
would imprint a phase as the two Stark-shifted, superposed states accrue phase at di↵erent
rates during the pulse. Consider, for example, an optical lattice clock whose phase depends on
spatially-varying systematic e↵ects as in Ref. [145]. One could measure the systematic phase
as a function of position and pattern an intensity profile to pulse during the measurement
time. A di↵erential polarizability between the clock states at the pulse wavelength would
add a phase in proportion to the local intensity of the pulse. Nontrivial phase profiles may
be imprinted by patterning the intensity profile with a spatial light modulator (SLM).

6.2.2 Sensing spatially-varying fields

Cold atoms are exquisite sensors. In many applications like sensing current loops from
the transition into a high-temperature superconducting state, accessing the relevant physics
requires sensing spatial variations in fields of interest [187]. Some applications might aim
to sense small deviations from a default background pattern. Our tune-out measurement
benefitted from biasing the interferometer phase to points of maximal phase sensitivity. For

2A simple gradient imprints a phase common to the entire sample. A curvature in the field produces
a gradient that depends on the height in the sample. A curvature in the intensity profile of the phase
patterning pulse is also required for the same reason.
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a pre-determined default pattern, one could use phase patterning to imprint a spatially-
varying bias phase such that the interferometer is maximally sensitive to deviations from
the default pattern at every position in space. Certain experiments may even provide the
opportunity to switch the signal of interest on and o↵ as we do in our measurement. Even
when they do not, one might achieve the same result by flipping the spatially-tuned bias
phase between positive and negative phase sensitivity and subtracting the results.

6.2.3 Patterning density profiles

Creating designer atomic density profiles, a strength of phase patterning, is important in mul-
tiple arenas like quantum gas microscopes [179, 180, 188, 189, 190, 191] and atom lithography
[192, 193, 194]. Multiple geometries may be useful for fashioning these density distributions.
Assembling non-trivial profiles will likely require a SLM. Our tune-out interferometer gen-
erated a spatial separation that sampled an intensity gradient along the interferometer axis
to pattern a density distribution. There, the phase patterning pulse must propagate per-
pendicular to the interferometer axis. A phase patterning pulse may propagate parallel to
the interferometry axis if the wave packets are in di↵erentially-polarizable states during the
application of the pulse (as in Fig. 5.1). Some experiments may not o↵er di↵erentially po-
larizable states, like interferometers operating on Bragg transitions [72, 124]. In those cases,
one could consider spatially modulating the phase on the interferometry beam itself. An
atomic fountain, for example, might install a deformable mirror as its retroreflection mirror.
Deforming the mirror only for the final recombination pulse would imprint that spatially-
varying phase onto the atomic sample. One might purge the opposite interferometer output
with a blow-away pulse to leave only the density-patterned result for the next stage of the ex-
periment. The final atomic densities could be lensed [195, 196, 194] to increase feature sizes
or reduce them below the di↵raction limit of the phase-patterning light. Multi-dimensional
patterning may also be of interest [197].

6.3 Extending interrogation time

Atom interferometry with lithium has been very challenging for several reasons, the most
daunting being those related to the large distribution of thermal speeds. It still may be
useful to improve on the methods presented in this dissertation. We first suggest a couple
modest improvements to the existing apparatus before dreaming a little more loftily.

Interrogation times are ultimately limited by atoms thermally expanding out of the beam
that drives the interferometry pulses. Most sequences release atoms from any trapping
potential for interferometry. Entering at velocity v, the atom travels a distance x = v⌥,
where ⌥ is the total time between the first and last pulse of an interferometer sequence.
If am atom transits a distance comparable to the beam waist of the interferometry beam
x ⇠ w, the pulses can no longer manipulate and interfere the atom and the atom is lost to the
dark abyss. Since thermal speeds ⇠

p
kBT /m scale with the square root of the temperature,
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reducing the temperature by some factor only increases the maximum interrogation time by
the square root of that factor. Widening the interferometry beam by some factor increases
the maximum interrogation time with the same factor, at the expense of the pulses’ Rabi
frequency and bandwidth. In this section, we will discuss several approaches that would
extend our interrogation times.

6.3.1 Improving our apparatus

The persistent magnetic field gradient set the strictest coherence limit on our recoil-sensitive
interferometer. Spatially-varying quadratic Zeeman shifts dephased atoms across the sample
through the 2�T phase. Lower gradients would allow our current apparatus to improve the
interrogation time and recoil sensitivity by a factor of ⇠ 10, but eddy currents in the steel
vacuum chamber sustain the gradient for times long compared to the thermal expansion rate.
Installing an H bridge is one option for mitigating the gradient on accessible timescales. It
would permit switching the polarity of the voltage on the MOT’s anti-Helmholtz coils to
generate a negative gradient that would counteract the slowly-decaying gradient from the
chamber. Lowering the gradient to ⇠ 0.02 G/cm would saturate the available interferometry
time allowed by our current 3.6-mm Raman beams.

Increasing the available power for driving Raman transitions would grant longer interfer-
ometry times. A simple way to do this at limited cost would be to install a second Raman
TA, so that each of two Raman TAs would be dedicated to one of the Raman frequencies.
To preserve the Rabi frequency and bandwidth, the peak intensity should be kept constant.
Since the intensity scales inversely with the area of the beam, doubling the Raman power
only enables an increase of the beam size and interrogation time by

p
2.

Replacing or repairing our camera could be an important upgrade for future work on our
apparatus. We did not explicitly quantify the level of imaging noise from the defects in Fig.
3.18, but it quite probably introduced a leading source of uncertainty in the fit. While it is
not directly in the interest of extending interrogation time, it could increase the sensitivity
and reduce the integration time of phase-patterned data.

6.3.2 Advanced cooling

While the D2 line’s poor resolution makes sub-Doppler cooling less e↵ective than other
species, advanced laser-cooling techniques can reduce the temperature by a factor of 2 or
3 [136, 198, 113]. The thermal speeds reduce by only the square root of that factor, so
one more advanced cooling stage would not increase the interrogation time significantly.
Furthermore, techniques like gray molasses [198] preserve phase-space density, so it would
deliver a lower temperature at the expense of a larger sample requiring a larger interferometry
beam. Evaporation can further cool below the recoil limit, but that requires thermalization
through collisions between evaporative purges. Lithium has an unfavorable s-wave scattering
length for thermalizing, one of the reasons 7Li lost the race to Bose-Einstein condensation
in the early 1990s [199].
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Lithium does have a broad Feshbach resonance [200, 201] that permits tuning the in-
teractions. A few teams have begun to use the Feshbach resonance &700 G to produce
BECs of 7Li at Rice [174], MIT [172, 181], UCSB [170, 202], CNRS [173], in Tokyo [203],
and in Korea [175].3 The atom numbers routinely exceed 106, competitive with the atom
numbers used in this dissertation, albeit at generally lower experimental repetition rates.
Interferometers with BECs must consider a systematic phase shift from mean-field atom-
atom interactions [204], but manipulating lithium’s scattering length further opens the door
to squelching it altogether during interferometry [205] at ⇠544 G [200]. Exploiting the fea-
tures of this magnetic Feshbach resonance require unfortunately large magnetic fields. Much
smaller magnetic fields have already limited the interferometer coherence in this disserta-
tion, so introducing a larger field could introduce more problems. The Feshbach resonance
operates on the magnetically-sensitive |2S1/2, F = 1,mF = 1i. One could form the BEC in
that state and transfer to the magnetically-insensitive |2S1/2, F = 2,mF = 0i with a single
microwave pulse to avoid the heating our optical pumping strategy would generate. Alter-
natively, there are two narrow Feshbach resonances near ⇠850 G for |2S1/2, F = 1,mF = 0i
[206] that might support evaporation and suppressing interactions.

Non-uniform quadratic Zeeman shifts from the persistent magnetic gradient limited the
coherence in our recoil-sensitive interferometer, but a colder sample trapped in an optical
dipole trap would allow for a more patient delay between shutting o↵ the MOT magnetic field
and performing interferometry. A uniform field, even if nonzero, would no longer provoke
decoherence from the quadratic Zeeman shift. Magnetic gradients can even be compensated
in two dimensions if need be.4 Readers concerned about other aspects of the magnetic fields
might consider controlling the Feshbach resonance optically [207].

It is likely that anyone pursuing or maintaining a BEC of lithium would have a harmonic
optical dipole trap. That opens a very interesting sphere of possibilities.

6.4 Free-oscillation interferometers

An alternative strategy to increase interrogation times is to trap the atoms so they stay
within the interferometry beam. After all, even tossing atoms upwards in an atomic foun-
tain [124, 72] with length L only improves the free fall time /

p
L. A trapped interferometer

can be made in a compact apparatus. Several groups have explored atom interferometry
with harmonically-confined samples. Some have investigated Michelson interferometers with
weak confinement [208] or strong confinement [209, 210] that may be used for Sagnac inter-
ferometry to sense rotations with atoms [211] or ions [53]. Some have run Ramsey-type clocks
on a microwave transition [212, 213, 214] or on a nearly-co-propagating Raman transition
with a tunable momentum kick [215].

3Related e↵orts produce Fermi-degenerate gases of 6Li [171, 182].
4Maxwell’s equations prohibit compensating generic gradients in all three dimensions.
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6.4.1 Free-oscillation recoil interferometer

No group has performed recoil-sensitive interferometry in a harmonic trap. There is a unique
challenge to constructing such an interferometer. Recall that the recoil energy emerges in
the Ramsey-Bordé interferometer through the classical action; however, the classical action
vanishes for any integer of half-periods of harmonic oscillation. In order to generate a
nonzero recoil phase, we can engineer an interferometer that operates on quarter-periods of
the oscillation. Such a scheme was proposed for Bragg-di↵racting electrons in a Penning trap
[216], but there are important di↵erences between that geometry and the case for neutral
atoms subject to counter-propagating Raman transitions.

Consider an atom in a one-dimensional harmonic potential with axial trap frequency !z

and period
T̃ = 2⇡/!z. (6.1)

The potential could be created by an optical dipole trap, for example. The equation of
motion z̈ + !

2

zz = 0 is solved by z(t) = A cos(!zt) + B sin(!zt). For an arbitrary initial
position zi and velocity vi, the trajectories and velocities follow

z = zi cos(!zt) +
vi

!z
sin(!zt), (6.2)

ż = �!zzi sin(!zt) + vi cos(!zt). (6.3)

It will be useful to recognize the positions and velocities after quarter- and half-period
evolutions: z(T̃ /4) = vi/!z, ż(T̃ /4) = �!zzi, z(T̃ /2) = �zi, and ż(T̃ /2) = �vi.

The matter-wave accrues phase during free evolution according to the action along the
classically-expected trajectory, which no longer depends only on the endpoints as it did in a
linear potential.5

Scl =
m

2

Z t

0

(ż(t0)2 � !
2

zz(t
0)2)dt0. (6.4)

Inserting the expressions,

Scl =
m

2

Z t

0

⇣
!
2

zz
2

i sin
2(!zt

0)� 2!zzivi sin(!zt
0) cos(!zt

0) + v
2

i cos
2(!zt

0)

� !
2

zz
2

i cos
2(!zt

0)� 2!zzivi sin(!zt
0) cos(!zt

0)� v
2

i sin
2(!zt

0)
⌘
dt

0 (6.5)

5One may wonder if the quantization of harmonic oscillator vibrational levels has any consequence
here. The derivation for the matter-wave phase that prescribes the action along the classically-expected
trajectory is su�ciently general to apply here without caveat. Interested readers may find guidance from
the ion community [217, 218], who takes up residence in phase space and considers displacement operators.
Here, one might displace the state and expand the coherent state in a Fock basis that supports energy
eigenvalues. The Fock components would evolve as eigenestates under the Hamiltonian and one could
calculate interferometer phases according to App. A. Alternatively, the optical lattice clock community has
also considered interferometry operating between vibrational levels of a harmonic trap [219].
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Figure 6.4: Free-oscillation recoil interferometer trajectories. Labels indicate the position
and velocity of the arms at critical instants just before or after a Raman pulse.

Performing the integrals, the action indeed vanishes for half periods Scl(T̃ /2) = 0, but is
nonzero for quarter periods

Scl(T̃ /4) = �mzivi. (6.6)

We can exploit the appearance of vi in the action for quarter-period evolutions, imparting
recoil velocities through Raman pulses.

The free-oscillation recoil interferometer consists of four ⇡/2 pulses, each separated in
time by a quarter of the trap period T̃ /4 as Fig. 6.4 shows. Labelling the trajectories with
the positions and velocities aids in computing the trajectories, as well as the laser and free-
evolution phases of the interferometer. We label the arm with the recoils the upper arm u

and the arm without recoils the lower arm l. Consider an atom in the trap with position z0

and velocity v0 at the moment of the first Raman pulse.

zu1 = zl1 = z0, (6.7)

zu2 = (v0 + 2vr)/!z, (6.8)

zu3 = �z0 � 2vr/!z, (6.9)

zu4 = �v0/!z, (6.10)

zl2 = v0/!z, (6.11)

zl3 = �z0, (6.12)

zl4 = �v0/!z. (6.13)
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The laser phases from wave vectors k2 and �k1 sum to

��FOL =(k2 · zu1 � !2 · 0)� (�k1 · zu1 � !1 · 0)
� (k2zu2 � !2T̃ /4) + (�k1zu2 � !1T̃ /4)

(k2zu3 � !2T̃ /2)� (�k1zu3 � !1T̃ /2)

�
h
(k2 · zl4 � 3!2T̃ /4)� (�k1 · zl4 � 3!1T̃ /4)

i
(6.14)

=� (!1 � !2)T̃ /2�
8

⇡
!rT̃ . (6.15)

Notice that the free-oscillation recoil interferometer does not require reversal of the Raman k-
vectors between the second and third pulses, in contrast to the Ramsey-Bordé interferometer.
The free-evolution phase requires calculating the classical actions along each quarter-period
leg. Including the internal state energies as well,

Su12 = �mz0(v0 + 2vr)� ~!aT̃ /4, (6.16)

Su23 = �m
v0 + 2vr
!z

(�!zz0 � 2vr)� ~!bT̃ /4, (6.17)

Su34 = �m(�z0 � 2vr/!z)(�v0)� ~!aT̃ /4, (6.18)

Sl12 = �mz0v0 � ~!bT̃ /4, (6.19)

Sl23 = �m
v0

!z
(�!zz0)� ~!bT̃ /4, (6.20)

Sl34 = �m(�z0)(�v0)� ~!bT̃ /4. (6.21)

The di↵erence in action along the arms gives the phase

��FOFE =
1

~ [Su12 + Su23 + Su34 � (Sl12 + Sl23 + Sl34)] = 2(!b � !a)
T̃

4
+

4

⇡
!rT̃ . (6.22)

The total phase di↵erence for the free-oscillation recoil interferometer is

���
FO = � 4

⇡
!rT̃ � �T̃ /2. (6.23)

The ⇡/2 pulses each produce two outputs each and it would be irresponsible not to
consider the e↵ect of those outputs. Fig. 6.5 displays those outputs and their trajectories.
Notice that not all overlapping trajectories interfere. Whether they interfere depends on
whether the Raman beams couple both the states and momenta of the two overlapping
states. There is evidently one more interferometer that closes. We will label the arm that
begins recoiling as the upper arm u and the arm that recoils at the second pulse the lower
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Figure 6.5: The conjugate free-oscillation interferometer. Here we show all pulse outputs,
with a second closing interferometer in black.

arm l.

z
0
u1 = z

0
l1 = z0, (6.24)

z
0
u2 = (v0 + 2vr)/!z, (6.25)

z
0
u3 = �z0, (6.26)

z
0
u4 = �(v0 + 2vr)/!z, (6.27)

z
0
l2 = v0/!z, (6.28)

z
0
l3 = �z0 + 2vr/!z, (6.29)

z
0
l4 = �(v0 + 2vr)/!z. (6.30)

Calculating the phase for this interferometer, we find a phase conjugate to the first interfer-
ometer.

��+

FO =
4

⇡
!rT̃ � �T̃ /2. (6.31)

The two interferometers overlap and their signals beat for nonzero �, just as in Fig. 4.2.
The two-photon detuning in our previous work incorporated any perturbations to the atomic
energy between the pulses, including linear and quadratic Zeeman shifts. It is interesting to
consider whether the trapping potential modifies this consideration. If the trap is an optical
dipole trap, for example, the trap perturbs the atomic energies through the AC Stark shift.
The harmonic potential we use to generate the trajectories and compute the action in Eq.
(6.4) accounts for that perturbation and one should therefore not add the perturbation again
to the internal state energies.

The precision of the interferometer scales with the trap oscillation period, so improving
the precision is no longer as simple as tuning the pulse separation time. The pulse separation
times must match the trap period. One can tune the trap period coarsely by tuning the angle
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between two beams of a crossed optical dipole trap. Tuning the intensity of the trap light
achieves finer adjustments to the trap period. Alternatively, one might load into a one-
dimensional optical lattice that generates a harmonic potential at each lattice site.

Crucially, neither of the interferometers’ phases depends on initial position or velocity of
the atom. The technique evidently allows the use of thermal samples, provided that the trap
is deep enough to hold them. For sub-recoil samples, one could extinguish the trap just after
the interferometer and allow the two interferometer outputs, di↵erent in velocity by 2vr (or
more for techniques that transfer higher momentum), to separate.

Challenges

There are several significant challenges to implementing this interferometer. We have only
considered the interferometer in a single dimension. The trapping potential should also
confine the atoms radially, preferably with a much higher radial trap frequency than the
longitudinal axial frequency. Any misalignment between the Raman axis and the longitudinal
trap axis will also excite radial motion. If the radial trap frequency is not an integer multiple
of the axial trap frequency, then the interferometer arms will not overlap radially, introducing
a matter-wave separation phase. It would be necessary to carefully align the Raman axis,
carefully calibrate and stabilize these frequencies, and estimate the size of any residual e↵ects.

Even if any radial separations are solved or mitigated, no trap is truly harmonic. A
perfectly harmonic trap requires infinite energy, since a perfectly harmonic potential diverges
with the distance from the trap center. A real potential necessarily has higher-order terms
that introduce anharmonicity into the potential. Compared to a harmonic potential, the
anharmonicity relaxes the real trap with increasing distance from the center. The e↵ects of
anharmonicity have been considered previously for free-oscillation interferometers [220, 217,
215].

Here, we describe the anharmonicity by adding corrections to the harmonic potential,

U =
1

2
m!

2

zz
2
�
1�G2z

2 + ...
�
, (6.32)

where the G coe�cients describe the strength of the term. We neglect the odd powers that
should be small in a nearly symmetric trap. The equation of motion contains the usual force
term / z and an additional contribution / z

3.

z̈ + !
2

zz � 2G2!
2

zz
3 = 0. (6.33)

This is an undamped Du�ng equation with well-understood solutions that follow bowtie-
shaped trajectories in phase space (in contrast to the harmonic oscillator’s ellipses). For the
quantum harmonic oscillator, the anharmonicity adds a vibrational-quanta-dependent term
to the energy spacing between neighboring levels [221].

Rather than treat the interferometer phase for the real-space Du�ng oscillator trajec-
tories, we can treat the phase perturbatively for small anharmonicity. Akin to finding the
perturbation to a state energy in quantum mechanics by computing the expectation value
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Figure 6.6: Free-oscillation interferometer for sensing AC forces.

of the perturbation with the unperturbed states, we leave the trajectories unperturbed and
integrate the perturbed free-evolution phase along those trajectories [222]. The phase we in-
tegrate is m!2

zG2z
4
/2~, along the trajectories z laid out above. The results depend strongly

on initial conditions, so here we only show the results for vanishing initial position and
velocity

���
FO,G2

=
9⇡/16� 1

8⇡3~ mG2(2vr)
4
T̃

3 (6.34)

��+

FO,G2
=

1� 3⇡/16

8⇡3~ mG2(2vr)
4
T̃

3 (6.35)

The challenges related to anharmonicity will be worse for hotter atoms since the initial
velocities and positions will be diverse, producing larger excursions from the trap center.

Warm samples like our lithium that are limited to smaller interrogation times with stan-
dard methods as they thermally expand more rapidly out of the interferometry beams.
Techniques to extend the interrogation time, like this free-oscillation technique, could make
precision measurements with thermal samples more viable. Nevertheless, it might be prudent
to explore e↵ects like those from anharmonicity first in a colder sample.

6.4.2 Free-oscillation AC force sensor

We may also consider the e↵ect of accelerations on free-oscillation interferometers. Any DC
acceleration adds a linear term to the potential, like gravity’s mgz. A harmonic potential
plus a linear potential is still harmonic, with an o↵set center. Gravity and linear accelerations
therefore introduce no phase to the trapped interferometer above. AC forces, on the other
hand, could couple into the trajectories. AC forces have been proposed as manifestations
of dark-sector physics [223]. Measuring vibrational power spectra in situ may another be
application of interest for an AC force sensor.

To search for AC forces, we prefer to generate an interferometer insensitive to recoil, an
interferometer that operates on half-periods of oscillation. Fig. 6.6 shows such an interfer-
ometer. The Raman pulses do not couple the trajectories at the first intersection after a
half period (without a reversal of the k vectors), but they do couple the trajectories after
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an integer number of full periods. We treat the phase due to a potential mãz sin(!F t+ �0)z
that oscillates at a frequency !F with a phase o↵set by �0 with respect to the oscillations in
the trap. We again treat the phase di↵erence for small AC forces perturbatively, integrating
the force term along the unperturbed trajectories. The result is

��FOAC = ��T̃ +
mãz

~
2vr(sin(�0)� sin(2⇡!F/!z))

(!z � !F )(!z + !F )
, (6.36)

where there is a �-dependent phase for interferometers operating with Raman pulses. The
dependence on the phase o↵set between the AC force and the free oscillation is certainly
unfortunate, but ingenuity has solved harder problems.
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Appendix A

Hamiltonian evolution for eigenstate
interferometers

The Schrödinger equation

i~ d

d⌧
| i = Ĥ(⌧)| i (A.1)

produces a feature worth appreciating for atom interferometry. The operator describing
evolution of small time steps d⌧

Û(d⌧) = exp(�iĤd⌧/~), (A.2)

integrates to
Û(⌧)|si = exp(�iĤ⌧/~)|si = exp(�i!s⌧)|si, (A.3)

only when |si is an eigenstate of the full Hamiltonian Ĥ.
After an interferometry pulse, the atom occupies a state of internal state and momentum,

say |b, 2~ki. Under the influence of gravity, the acceleration constantly changes the atomic
momentum, implying that the state is not an eigenstate of the Hamiltonian. In those cases,
it becomes more convenient to describe the interferometer phase using a path integral with
the classical action as outlined in Section 2.6.5.

Eigenstates accrue phase much more simply than the action, integrating a phase factor
exp(�i!s⌧), where !s is the eigenstate’s frequency. In most of the interferometers in this
thesis, the interferometer operates perpendicular to gravity, so the state evolves as an eigen-
state and integrates phase in this simple way. Here we treat an example of how to use this
simple Hamiltonian evolution to calculate interferometer phases for eigenstates.

The full Hamiltonian includes the atom’s internal state energy, its external kinetic energy
p
2
/2m, as well as the energies of all the photons floating around to drive the transitions.1

1We treat those pulse periods as infinitesimally small periods of time during which di↵erent states are
coupled. Since states are coupled, the state is obviously not an eigenstate of the full Hamiltonian at those
moments. Treating them as infinitesimally small means that no phase accrues during that time anyway. Any
phase that does accrue in reality there we call a “finite pulse e↵ec”.
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Figure A.1: Ramsey-Bordé spacetime diagram with photons. The photon frequencies !1 >

!2 drive stimulated Raman transitions between hyperfine states with energy !b > !a = 0.
The labeling of photons is not physical; it is for bookkeeping only.

Consider the standard Ramsey-Bordé interferometer operating perpendicular to gravity. The
upper arm of the interferometer recoils away, ceases, and recoils back toward the lower arm.
Photons drive stimulated Raman transitions to make this occur. We can consider the photons
that drive the transitions as propagating from distant points to arrive at the atom at the
moment of the transition.

Fig. A.1 separately displays the upper and lower arms of the interferometer with the
photons that drive the four transitions. We label the photons A through H just to track
which photon performs which function. For example, the upper arm of the interferometer
absorbs photon A and emits photon B at the first pulse. Since photon B is emitted, it
continues to propagate away from the atom. It remains a contribution to the total energy,
so we must continue to track its contribution beyond the first pulse.

The lower arm of the interferometer only involves absorbing H and emitting G. Taken
alone, those photons would fail to reproduce the same total energy as the upper arm before
and after the interferometer. Integrating those di↵erent energies to infinity would cause the
energetics of these situations to diverge. But the interferometer should present a di↵erence
only between the arms. The state before and after the interferometer must be identical,
distinguished only by the path it took to arrive at that state. We therefore include extra
photons ’B’ and ’C’ in scare quotes throughout the interferometer to avoid this divergence,
even though they do not participate in any transitions in the lower arm of the interferometer.

Let us sum the energy to find the eigenvalue returned by the full Hamiltonian during each
period between the pulses. Consider the energy, divided by ~, for the upper arm between
pulses 1 and 2. The phase accrues for T as the total energy of the state, which includes
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photons F, B, and D with frequencies !1, !2, and !2, respectively. We must not forget the
minus sign in front of the Hamiltonian in the temporal evolution operator.

�u12 = �!bT � 4!rT � !1T � 2!2T. (A.4)

Between the second and third pulses, there is no recoil energy and we set the internal energy
!a = 0 for the lower hyperfine state

�u34 = �2!1T
0 � !2T

0
. (A.5)

Between the third and fourth pulses,

�u12 = �!bT � 4!rT � !1T � 2!2T. (A.6)

Summing up these phases for the upper arm, we find

�u = �2!bT � 8!rT � 2!1T � 4!2T � 2!1T
0 � !2T

0 (A.7)

For the lower arm,

�l12 = �2!1T � !2T, (A.8)

�l12 = �2!1T
0 � !2T

0
, (A.9)

�l12 = �2!1T � !2T, (A.10)

with total phase
�l = �4!1T � 2!2T � 2!0

T � !1T
0
. (A.11)

The interferometer phase is the phase di↵erence between the arms.

�� = �u � �l = �8!rT + 2(!1 � !2 � !b)T = �8!rT + 2�T. (A.12)

We have reproduced the same phase as the path integral method, with arguably less e↵ort.
A similar analysis of the conjugate Ramsey-Bordé also produces the correct phase di↵erence
+8!rT + 2�T .
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ferometer: New Determination of the Fine Structure Constant”. In: Phys. Rev. Lett.
101 (2008), p. 230801. doi: 10.1103/PhysRevLett.101.230801. arXiv: 0810.3152
[physics.atom-ph].

[145] G. E. Marti et al. “Imaging Optical Frequencies with 100 µHz Precision and 1.1 µm
Resolution”. In: Phys. Rev. Lett. 120 (2018), p. 103201. doi: 10.1103/PhysRevLett.
120.103201. arXiv: 1711.08540 [physics.atom-ph].

[146] S. Sturm et al. “High-precision measurement of the atomic mass of the electron”.
In: Nature 506 (2014), p. 467. doi: 10 . 1038 / nature13026. arXiv: 1406 . 5590
[physics.atom-ph].

[147] B. J. Mount, M. Redshaw, and E. Myers. “Atomic masses of 6Li, 23Na, 39,41K, 85,87Rb
and 133Cs”. In: Phys. Rev. A 82 (2010), p. 042513. doi: 10.1103/PhysRevA.82.
042513.

https://doi.org/10.1103/PhysRevA.80.013409
https://doi.org/10.1103/PhysRevA.80.013409
https://arxiv.org/abs/0905.1063
https://doi.org/10.1103/PhysRevLett.118.233201
https://arxiv.org/abs/1308.1935
https://doi.org/10.1103/PhysRevA.85.033420
https://doi.org/10.1103/PhysRevA.85.033420
https://arxiv.org/abs/1203.0189
https://doi.org/10.1103/PhysRevA.98.043412
https://arxiv.org/abs/1805.09862
https://arxiv.org/abs/1805.09862
https://doi.org/10.1088/1367-2630/13/11/115012
https://doi.org/10.1088/1464-4266/4/1/310
https://doi.org/10.1038/nphys3408
https://arxiv.org/abs/1505.06196
https://doi.org/10.1103/PhysRevLett.118.233201
https://arxiv.org/abs/1610.07588
https://doi.org/10.1103/PhysRevLett.101.230801
https://arxiv.org/abs/0810.3152
https://arxiv.org/abs/0810.3152
https://doi.org/10.1103/PhysRevLett.120.103201
https://doi.org/10.1103/PhysRevLett.120.103201
https://arxiv.org/abs/1711.08540
https://doi.org/10.1038/nature13026
https://arxiv.org/abs/1406.5590
https://arxiv.org/abs/1406.5590
https://doi.org/10.1103/PhysRevA.82.042513
https://doi.org/10.1103/PhysRevA.82.042513


BIBLIOGRAPHY 190

[148] D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse. “Cavity control of a single-
electron quantum cyclotron: Measuring the electron magnetic moment”. In: Phys.
Rev. A 83 (2011), p. 052122. doi: 10.1103/PhysRevA.83.052122. arXiv: 1009.4831
[physics.atom-ph].

[149] D. Hanneke, S. Fogwell, and G. Gabrielse. “New Measurement of the Electron Mag-
netic Moment and the Fine Structure Constant”. In: Phys. Rev. Lett. 100 (2008),
p. 120801. doi: 10.1103/PhysRevLett.100.120801. arXiv: 0801.1134 [physics.atom-ph].

[150] G. Gabrielse et al. “Towards an Improved Test of the Standard Model’s Most Precise
Prediction”. In: Atoms 7 (2019), p. 45. doi: 10.3390/atoms7020045. arXiv: 1904.
06174 [quant-ph].

[151] S. Laporta. “High Precision Calculation of the 4-Loop Contribution to the electron
g-2 in QED”. In: Phys. Lett. B 772 (2017), p. 232. doi: 10.1016/j.physletb.2017.
06.056. arXiv: 1704.06996 [hep-ph].
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